Bax, Bcl2, and p53 Differentially Regulate Neomycin- and Gentamicin-Induced Hair Cell Death in the Zebrafish Lateral Line

  • Allison B. CoffinEmail author
  • Edwin W. Rubel
  • David W. Raible
Research Article


Sensorineural hearing loss is a normal consequence of aging and results from a variety of extrinsic challenges such as excessive noise exposure and certain therapeutic drugs, including the aminoglycoside antibiotics. The proximal cause of hearing loss is often death of inner ear hair cells. The signaling pathways necessary for hair cell death are not fully understood and may be specific for each type of insult. In the lateral line, the closely related aminoglycoside antibiotics neomycin and gentamicin appear to kill hair cells by activating a partially overlapping suite of cell death pathways. The lateral line is a system of hair cell-containing sense organs found on the head and body of aquatic vertebrates. In the present study, we use a combination of pharmacologic and genetic manipulations to assess the contributions of p53, Bax, and Bcl2 in the death of zebrafish lateral line hair cells. Bax inhibition significantly protects hair cells from neomycin but not from gentamicin toxicity. Conversely, transgenic overexpression of Bcl2 attenuates hair cell death due to gentamicin but not neomycin, suggesting a complex interplay of pro-death and pro-survival proteins in drug-treated hair cells. p53 inhibition protects hair cells from damage due to either aminoglycoside, with more robust protection seen against gentamicin. Further experiments evaluating p53 suggest that inhibition of mitochondrial-specific p53 activity confers significant hair cell protection from either aminoglycoside. These results suggest a role for mitochondrial p53 activity in promoting hair cell death due to aminoglycosides, likely upstream of Bax and Bcl2.


aminoglycoside ototoxicity neuromast hearing loss Danio rerio 



This research was funded by the National Institute on Deafness and Other Communication Disorders (NIDCD) grants DC004661, DC005987, DC009931, and DC011344. Additional support was provided by the Virginia Merrill Bloedel Hearing Research Center at the University of Washington and by Washington State University Vancouver. We thank David White for fish husbandry assistance, Kay Williamson and Lauren Hayashi for assistance with data collection, and three anonymous reviewers for comments that strengthened the manuscript.


  1. Antonsson B (2001) Bax and other pro-apoptotic Bcl-2 family “killer-proteins” and their victim, the mitochondrion. Cell Tissue Res 306:347–361PubMedCrossRefGoogle Scholar
  2. Berghmans S, Murphey RD, Wienholds E, Neuberg D, Kutok JL, Fletcher CD, Morris JP, Liu TX, Schulte-Merker S, Kanki JP, Plasterk R, Zon LI, Look AT (2005) tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci USA 102(2):407–412PubMedCrossRefGoogle Scholar
  3. Besirli CG, Deckwerth TL, Crowder RJ, Freeman RS, Johnson EM Jr (2003) Cytosine arabinoside rapidly activates Bax-dependent apoptosis and a delayed Bax-independent death pathway in sympathetic neurons. Cell Death Differ 10(9):1045–1058PubMedCrossRefGoogle Scholar
  4. Bombrun A, Gerber P, Casi G, Terradillos O, Antonsson B, Halazy S (2003) 3,6-Dibromocarbazole piperazine derivatives of 2-propanol as first inhibitors of cytochrome c release via bax channel modulation. J Med Chem 46(21):4365–4368PubMedCrossRefGoogle Scholar
  5. Caelles C, Heimberg A, Karin M (1994) p53-Dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370:220–223PubMedCrossRefGoogle Scholar
  6. Cheng E, H-Y A, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ (2001) BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8:705–711PubMedCrossRefGoogle Scholar
  7. Cheng AG, Cunningham LL, Rubel EW (2002) Hair cell death activation in the avian basillar papilla: characterization of the in vitro model and caspase activation. J Assoc Res Otolaryngol 4(1):91–105Google Scholar
  8. Cheng AG, Cunningham LL, Rubel EW (2005) Mechanisms of hair cell death and protection. Curr Opin Otolaryngol Head Neck Surg 13(6):343–348PubMedCrossRefGoogle Scholar
  9. Cheung ECC, Melanson-Drapeau L, Cregan SP, Vanderluit JL, Ferguson KL, McIntosh WC, Park DS, Bennett SAL, Slack RS (2005) Apoptosis-inducing factor is a key factor in neuronal cell death propagated by BAX-dependent and BAX-independent mechanisms. J Neurosci 25(6):1324–1334PubMedCrossRefGoogle Scholar
  10. Chipuk J, Green D (2006) Dissecting p53-dependent apoptosis. Cell Death Differ 13:994–1002PubMedCrossRefGoogle Scholar
  11. Chipuk JE, Kuawana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–1014PubMedCrossRefGoogle Scholar
  12. Coffin AB, Reinhart KE, Owens KN, Raible DW, Rubel EW (2009) Extracellular divalent cations modulate aminoglycoside-induced hair cell death in the zebrafish lateral line. Hear Res 253(1–2):42–51PubMedCrossRefGoogle Scholar
  13. Coffin AB, Ou H, Owens KN, Santos F, Simon JA, Rubel EW, Raible DW (2010) Chemical screening for hair cell loss and protection in the zebrafish lateral line. Zebrafish 7(1):3–11PubMedCrossRefGoogle Scholar
  14. Coffin AB, Williamson KL, Mamiya A, Raible DW, Rubel EW (2013) Profiling drug-induced cell death pathways in the zebrafish lateral line. Apoptosis 18(4):393–408. doi: 10.1007/s10495-013-0816-8 PubMedCrossRefGoogle Scholar
  15. Coombs S, Görner P, Münz H (1989) The mechanosensory lateral line: neurobiology and evolution. Springer, New YorkCrossRefGoogle Scholar
  16. Coombs S, Braun CB, Donovan B (2001) The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. J Exp Biol 204:337–348PubMedGoogle Scholar
  17. Cunningham LL, Cheng AG, Rubel EW (2002) Caspase activation in hair cells of the mouse utricle exposed to neomycin. J Neurosci 22(19):8532–8540PubMedGoogle Scholar
  18. Cunningham LL, Matsui JI, Warchol ME, Rubel EW (2004) Overexpression of Bcl-2 prevents neomycin-induced hair cell death and caspase-9 activation in the adult mouse utricle in vitro. J Neurbiol 601(1):89–100CrossRefGoogle Scholar
  19. Davidson W, Ren Q, Kari G, Kashi O, Dicker AP, Rodeck U (2008) Inhibition of p73 function by Pifithrin-alpha as revealed by studies in zebrafish embryos. Cell Cycle 7(9):1224–1230PubMedCrossRefGoogle Scholar
  20. Dijkgraaf S (1963) The functioning and significance of the lateral line organs. Biol Rev 38:51–105PubMedCrossRefGoogle Scholar
  21. Durante-Mangoni E, Grammatikos A, Util R, Falagas ME (2009) Do we still need the aminoglycosides? Int J Antimicrob Agents 33(3):201–205PubMedCrossRefGoogle Scholar
  22. Endo H, Kamada H, Nito C, Nishi T, Chan PH (2006) Mitochondrial translocation of p53 mediates release of cytochrome c and hippocampal CA1 neuronal death after transient global cerebral ischemia in rats. J Neurosci 26(30):7974–7983PubMedCrossRefGoogle Scholar
  23. Erster S, Mihara M, Kim RH, Petrenko O, Moll UM (2004) In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol 42(15):6728–6741CrossRefGoogle Scholar
  24. Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR (1999) Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondrial is inhibitable by Bcl-xL. J Biol Chem 274(4):2225–2233PubMedCrossRefGoogle Scholar
  25. Forge A, Li L (2000) Apoptotic death of hair cells in mammalian vestibular sensory epithelia. Hear Res 139(1–2):97–115PubMedCrossRefGoogle Scholar
  26. Geng Y, Walls KC, Ghosh AP, Akhtar RS, Klocke BJ, Roth KA (2010) Cytoplasmic p53 and activated Bax regulate p53-dependent, transcription-independent neural precursor cell apoptosis. J Histochem Cytochem 58(3):265–275PubMedCrossRefGoogle Scholar
  27. Green DR, Kroemer G (2009) Cytoplasmic functions of the tumor suppressor p53. Nature 458(7242):1127–1130PubMedCrossRefGoogle Scholar
  28. Han J, Goldstein LA, Hou W, Gastman BR, Rabinowich H (2010) Regulation of mitochondrial apoptotic events by p53-mediated disruption of complexes between antiapoptotic Bcl-2 members and Bim. J Biol Chem 285(29):22473–22483PubMedCrossRefGoogle Scholar
  29. Harris JA, Cheng AG, Cunningham LL, MacDonald G, Raible DW, Rubel EW (2003) Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio). J Assoc Res Otolaryngol 4(2):219–234PubMedCrossRefGoogle Scholar
  30. Hirose Y, Simon JA, Ou H (2011) Hair cell toxicity in anti-cancer drugs: evaluating an anti-cancer drug library for independent and synergistic toxic effects on hair cells using the zebrafish lateral line. J Assoc Res Otolaryngol 12(6):719–728PubMedCrossRefGoogle Scholar
  31. Jensen-Smith HC, Hallworth R, Nichols MG (2012) Gentamicin rapidly inhibits mitochondrial metabolism in high-frequency cochlear outer hair cells. PLoS One 7(6):e38471PubMedCrossRefGoogle Scholar
  32. Jette CA, Flanagan AM, Ryan J, Pyati UJ, Carbonneau S, Stwerart RA, Langenau DM, Look AT, Letai A (2008) BIM and other BCL-2 family proteins exhibit cross-species conservation of function between zebrafish and mammals. Cell Death Diff 15:1063–1072CrossRefGoogle Scholar
  33. Jiang M, Milner J (2003) Bcl-2 constitutively suppresses p53-dependent apoptosis in colorectal cancer cells. Genes Dev 17:832–837PubMedCrossRefGoogle Scholar
  34. Jiang H, Sha SH, Forge A, Schacht J (2006) Caspase-independent pathways of hair cell death induced by kanamycin in vivo. Cell Death Differ 13(1):20–30PubMedCrossRefGoogle Scholar
  35. Kaiser CL, Chapman BJ, Guidi JL, Terry CE, Mangiardi DA, Cotanche DA (2008) Comparison of activated caspase detection methods in the gentamicin-treated chick cochlea. Hear Res 240(1–2):1–11PubMedCrossRefGoogle Scholar
  36. Kindt KS, Finch G, Nicolson T (2012) Kinocilia mediate mechanosensitivity in developing zebrafish hair cells. Dev Cell 23(2):329–341PubMedCrossRefGoogle Scholar
  37. Kojima K, Konopleva M, McQueen T, O’Brien S, Plunkett W, Andreeff M (2006) Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood 108(3):993–1000PubMedCrossRefGoogle Scholar
  38. Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV, Gudkov AV (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285(5434):1733–1737PubMedCrossRefGoogle Scholar
  39. Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE, Oltvai ZN (1993) Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol 4(6):327–332PubMedGoogle Scholar
  40. Kratz E, Eimon PM, Mukhala K, Stern H, Zha J, Strasser A, Hart R, Ashkenazi A (2006) Functional characterization of the Bcl-2 gene family in the zebrafish. Cell Death Differ 13(10):1631–1640PubMedCrossRefGoogle Scholar
  41. Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS, Parant JM, Yost HJ, Kanki JP, Chien C-B (2007) The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236:3088–3099PubMedCrossRefGoogle Scholar
  42. Langenau DM, Jette C, Berghmans S, Palomero T, Kanki JP, Kutok JL, Look AT (2005) Suppression of apoptosis by bcl-2 overexpression in lymphoid cells of transgenic zebrafish. Blood 105(8):3278–3285PubMedCrossRefGoogle Scholar
  43. Leu JI-J, Pimkina J, Frank A, Murphy ME, George DL (2009) A small molecular inhibitor of inducible heat shock protein 70. Mol Cell 36:15–27PubMedCrossRefGoogle Scholar
  44. Levine AJ, Oren M (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9(10):749–758PubMedCrossRefGoogle Scholar
  45. Li L, Nevill G, Forge A (1995) Two modes of hair cell loss from the vestibular sensory epithelia of the guinea pig inner ear. J Comp Neurol 355(3):405–417PubMedCrossRefGoogle Scholar
  46. Li A, Barmada SJ, Roth KA, Harris DA (2007) N-terminally deleted forms of prior protein activate both Bax-dependent and Bax-independent neurotoxic pathways. J Neurosci 27(4):852–859PubMedCrossRefGoogle Scholar
  47. Matsui JI, Haque A, Huss D, Messana EP, Alosi JA, Roberson DW, Cotanche DA, Dickman JD, Warchol ME (2003) Caspase inhibitors promote vestibular hair cell survival and function after aminoglycoside treatment in vivo. J Neurosci 23(14):6111–6122PubMedGoogle Scholar
  48. Mazurek B, Lou X, Olze H, Haupt H, Szczepek AJ (2012) In vitro protection of auditory hair cells by salicylate from gentamicin-induced but not neomycin-induced cell loss. Neurosci Lett 506:107–110PubMedCrossRefGoogle Scholar
  49. Metcalf WK, Kimmel CB, Schabtach E (1985) Anatomy of the posterior lateral line system in young larvae of the zebrafish. J Comp Neurol 233(3):377–389CrossRefGoogle Scholar
  50. Middleton G, Cox SW, Korsmeyer S, Davies AM (2000) Differences in bcl-2- and bax-independent function in regulating apoptosis in sensory neuron populations. Eur J Neurosci 12(3):819–827PubMedCrossRefGoogle Scholar
  51. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoscka P, Moll UM (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11(3):577–590PubMedCrossRefGoogle Scholar
  52. Moll U, Wolff S, Speidel D, Deppert W (2005) Transcription-independent proapoptotic functions of p53. Curr Opin Cell Biol 17:631–636PubMedCrossRefGoogle Scholar
  53. Montgomery JC, MacDonald JA (1987) Sensory tuning of lateral line receptors in Antarctic fish to the movements of planktonic prey. Science 235:195–196PubMedCrossRefGoogle Scholar
  54. Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389:960–963CrossRefGoogle Scholar
  55. Morita A, Yamamoto S, Wang B, Tanaka K, Suzuki N, Aoki S, Ito A, Nanao T, Ohya S, Yoshino M, Zhu J, Enomoto A, Matsumoto Y, Funatsu O, Hosoi Y, Ikekita M (2010) Sodium orthvanadate inhibits p53-mediated apoptosis. Cancer Res 79(10):2570265Google Scholar
  56. Murakami SL, Cunningham LL, Werner LA, Bauer E, Pujols R, Raible DW, Rubel EW (2003) Developmental differences in susceptibility to neomycin-induced hair cell death in the lateral line neuromasts of zebrafish (Danio rerio). Hear Res 186(1–2):47–56PubMedCrossRefGoogle Scholar
  57. New JG, Fewkes LA, Khan SN (2001) Strike feeding behavior in the muskellunge, Esox masquinongy: contributions of the lateral line and visual sensory systems. J Exp Biol 204:1207–1221PubMedGoogle Scholar
  58. Ou HC, Raible DW, Rubel EW (2007) Cisplatin-induced hair cell loss in zebrafish (Danio rerio) lateral line. Hear Res 233(1–2):46–53PubMedCrossRefGoogle Scholar
  59. Owens KN, Cunningham DE, MacDonald G, Rubel EW, Raible DW, Pujol R (2007) Ultrastructural analysis of aminoglycoside-induced hair cell death in the zebrafish lateral line reveals an early mitochondrial response. J Comp Neurol 502(4):522–543PubMedCrossRefGoogle Scholar
  60. Owens KN, Coffin AB, Hong LS, Bennett KO, Rubel EW, Raible DW (2009) Response of mechanosensory hair cells of the zebrafish lateral line to aminoglycosides reveals distinct cell death pathways. Hear Res 253(1–2):32–41PubMedCrossRefGoogle Scholar
  61. Pfannenstiel SC, Praetorius M, Plinkert PK, Brough DE, Staecker H (2009) Bcl-2 gene therapy prevents aminoglycoside-induced degeneration of auditory and vestibular hair cells. Audiol Neurootol 14(4):254–266PubMedCrossRefGoogle Scholar
  62. Pietsch EC, Sykes SM, McMahon SB, Murphy ME (2008) The p53 family and programmed cell death. Oncogene 27(50):6507–6521PubMedCrossRefGoogle Scholar
  63. Pimkina J, Murphy ME (2011) Interaction of the ARF tumor suppressor with cytosolic HSP70 contributes to its autophagic function. Cancer Biol Ther 12(6):503–509PubMedCrossRefGoogle Scholar
  64. Putcha GV, Deshmukh M, Johnson EM Jr (1999) BAX translocation is a critical event in neuronal apoptosis: regulation by neuroprotectants, BCL-2, and caspases. J Neurosci 19(17):7476–7485PubMedGoogle Scholar
  65. Raible DW, Kruse GJ (2000) Organization of the lateral line system in embryonic zebrafish. J Comp Neurol 421(2):189–198PubMedCrossRefGoogle Scholar
  66. Rizzi MD, Hirose K (2007) Aminoglycoside ototoxicity. Curr Opin Otolaryngol Head Neck Surg 15(5):352–357PubMedCrossRefGoogle Scholar
  67. Santos F, MacDonald G, Rubel EW, Raible DW (2006) Lateral line hair cell maturation is a determinant of aminoglycoside susceptibility in zebrafish (Danio rerio). Hear Res 213(1–2):25–33PubMedCrossRefGoogle Scholar
  68. Schacht J, Hawkins JE (2006) Sketches of otohistory. Part 11: ototoxicity: drug-induced hearing loss. Audiol Neurootol 11(1):1–6PubMedGoogle Scholar
  69. Scorrano L, Korsemeyer SJ (2003) Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun 304(3):437–444PubMedCrossRefGoogle Scholar
  70. Sohn D, Graupner V, Neise D, Essmann F, Schulze-Osthoff K, Jänicke RU (2009) Pifithrin-α protects against DNA damage-induced apoptosis downstream of mitochondria independent of p53. Cell Death Differ 16:869–878PubMedCrossRefGoogle Scholar
  71. Strom E, Sathe S, Komarov P, Chernova O, Pavlovska I, Shyshynova I, Bosykh D, Burdelya L, Macklis R, Skaliter R, Komarova E, Gudkov A (2006) Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol 2:474–479PubMedCrossRefGoogle Scholar
  72. Suli A, Watson GM, Rubel EW, Raible DW (2012) Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells. PLoS One 7(2):e29727PubMedCrossRefGoogle Scholar
  73. Suzuki M, Ushio M, Yamasoba T (2008) Time course of apoptotic cell death in guinea pig cochlea following intratympanic gentamicin application. Acta Otolaryngol 128(7):724–731PubMedCrossRefGoogle Scholar
  74. Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11(9):621–632PubMedCrossRefGoogle Scholar
  75. Taleb M, Brandon CS, Lee FS, Lomax MI, Dillmann WH, Cunningham LL (2008) Hsp70 inhibits aminoglycoside-induced hair cell death and is necessary for the protective effect of heat shock. J Assoc Res Otolaryngol 9(3):277–289PubMedCrossRefGoogle Scholar
  76. Taleb M, Brandon CS, Lee FS, Harris KC, Dillmann WH, Cunningham LL (2009) Hsp70 inhibits aminoglycoside-induced hearing loss and cochlear hair cell death. Cell Stress Chaperones 14(4):427–437PubMedCrossRefGoogle Scholar
  77. Taylor RR, Nevill G, Forge A (2008) Rapid hair cell loss: a mouse model for cochlear lesions. J Assoc Res Otolaryngol 9(1):44–64PubMedCrossRefGoogle Scholar
  78. Ton C, Parng C (2005) The use of zebrafish for assessing ototoxic and otoprotective agents. Hear Res 208(1–2):79–88PubMedCrossRefGoogle Scholar
  79. Van Delft MF, Huang DCS (2006) How the Bcl-2 family of proteins interact to regulate apoptosis. Cell Res 16:203–213PubMedCrossRefGoogle Scholar
  80. Vaseva A, Moll U (2009) The mitochondrial p53 pathway. Biochim Biophys Acta 1787:414–420PubMedCrossRefGoogle Scholar
  81. Vaseva AV, Marchenko ND, Moll UM (2009) The transcription-independent mitochondrial p53 program is a major contributor to nutlin-induced apoptosis in tumor cells. Cell Cycle 8(11):1711–1719PubMedCrossRefGoogle Scholar
  82. Vassilev L, Vu B, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu E (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848PubMedCrossRefGoogle Scholar
  83. Vicente-Torres MA, Schacht J (2006) A BAD link to mitochondrial cell death in the cochlea of mice with noise-induced hearing loss. J Neurosci Res 83(8):1564–1572PubMedCrossRefGoogle Scholar
  84. Vlasits AL, Simon JA, Raible DW, Rubel EW, Owens KN (2012) Screen of FDA-approved drug library reveals compounds that protect hair cells from aminoglycosides and cisplatin. Hear Res 294(1–2):153–165. doi: 10.1016/j.heares.2012.08.002 PubMedCrossRefGoogle Scholar
  85. Vousden K, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431PubMedCrossRefGoogle Scholar
  86. Wang J, Schmitt N, Rubel EW, Lenoir M, Raible DW, Puel J-L (2009) Rapid hearing loss and hair cell degeneration following acute intracochlear perfusion of neomycin in guinea pig. Assoc Res Otolaryngol Midwinter Meet 32:54–55Google Scholar
  87. Warchol ME (2010) Cellular mechanisms of aminoglycoside ototoxicity. Curr Opin Otolaryngol Head Neck Surg 18(5):454–458PubMedCrossRefGoogle Scholar
  88. Wei MC, Zong W-X, Cheng EH-Y, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730PubMedCrossRefGoogle Scholar
  89. Westerfield M (2000) The zebrafish book: a guide for laboratory use of zebrafish (Danio rerio), 4th edn. University of Oregon Press, EugeneGoogle Scholar
  90. Williams JA, Holder N (2000) Cell turnover in neuromasts of zebrafish larvae. Hear Res 143:171–181PubMedCrossRefGoogle Scholar
  91. Xie J, Talaska AE, Schacht J (2011) New developments in aminoglycoside therapy and ototoxicity. Hear Res 281(1–2):28–37PubMedCrossRefGoogle Scholar
  92. Yamashita D, Minami SB, Kanzaki S, Ogawa K, Miller JM (2008) Bcl-2 genes regulate noise-induced hearing loss. J Neurosci Res 86(4):920–928PubMedCrossRefGoogle Scholar
  93. Zhang M, Cramer M (2006) Pifithrin-alpha protects gentamicin ototoxicity. Assoc Res Otolaryngol mid-winter meeting abstract # 121Google Scholar
  94. Zhang M, Liu W, Ding D, Salvi R (2003) Pifithrin-alpha suppresses p53 and protects cochlear and vestibular hair cells from cisplatin-induced apoptosis. Neuroscience 120(1):191–205PubMedCrossRefGoogle Scholar

Copyright information

© Association for Research in Otolaryngology 2013

Authors and Affiliations

  • Allison B. Coffin
    • 1
    • 2
    • 3
    Email author
  • Edwin W. Rubel
    • 1
    • 2
  • David W. Raible
    • 1
    • 4
  1. 1.Virginia Merrill Bloedel Hearing Research CenterUniversity of WashingtonSeattleUSA
  2. 2.Department of Otolaryngology-Head and Neck SurgeryUniversity of WashingtonSeattleUSA
  3. 3.Department of Integrative Physiology and NeuroscienceWashington State UniversityVancouverUSA
  4. 4.Department of Biological StructureUniversity of WashingtonSeattleUSA

Personalised recommendations