Skip to main content

Identification of Inputs to Olivocochlear Neurons Using Transneuronal Labeling with Pseudorabies Virus (PRV)

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Olivocochlear (OC) neurons respond to sound and provide descending input that controls processing in the cochlea. The identities of neurons in the pathways providing inputs to OC neurons are incompletely understood. To explore these pathways, the retrograde transneuronal tracer pseudorabies virus (Bartha strain, expressing green fluorescent protein) was used to label OC neurons and their inputs in guinea pigs. Labeling of OC neurons began 1 day after injection into the cochlea. On day 2 (and for longer survival times), transneuronal labeling spread to the cochlear nucleus, inferior colliculus, and other brainstem areas. There was a correlation between the numbers of these transneuronally labeled neurons and the number of labeled medial (M) OC neurons, suggesting that the spread of labeling proceeds mainly via synapses on MOC neurons. In the cochlear nucleus, the transneuronally labeled neurons were multipolar cells including the subtype known as planar cells. In the central nucleus of the inferior colliculus, transneuronally labeled neurons were of two principal types: neurons with disc-shaped dendritic fields and neurons with dendrites in a stellate pattern. Transneuronal labeling was also observed in pyramidal cells in the auditory cortex and in centers not typically associated with the auditory pathway such as the pontine reticular formation, subcoerulean nucleus, and the pontine dorsal raphe. These data provide information on the identity of neurons providing input to OC neurons, which are located in auditory as well as non-auditory centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

FIG. 1
Fig. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  • Arnesen AR (1984) Fibre population of the vestibulocochlear anastomosis in humans. Acta Otolaryngol 98:501–518

    Google Scholar 

  • Arnesen AR, Osen KK (1984) Fibre spectrum of the vestibulo-cochlear anastomosis in the cat. Acta Otolaryngol 98:255–269

    Google Scholar 

  • Aschoff A, Ostwald J (1987) Different origins of cochlear effernts in some bat species, rats, and guinea pigs. J Comp Neurol 264:56–72

    Google Scholar 

  • Benson TE, Brown MC (2006) Ultrastructure of synaptic input to medial olivocochlear neurons. J Comp Neurol 499:244–257

    Article  PubMed  Google Scholar 

  • Billig I, Yeager MS, Blikas A, Raz Y (2007) Neurons in the cochlear nuclei controlling the tensor tympani in the rat: a study using pseudorabies virus. Brain Res 1154:124–136

    Article  PubMed  CAS  Google Scholar 

  • Brown MC, Kujawa SG, Duca ML (1998) Single olivocochlear neurons in the guinea pig: I. Binaural facilitation of responses to high-level noise. J Neurophysiol 79:3077–3087

    PubMed  CAS  Google Scholar 

  • Brown MC, de Venecia RK, Guinan JJ Jr (2003) Responses of medial olivocochlear (MOC) neurons: specifying the central pathways of the MOC reflex. Exp Brain Res 153:491–498

    Article  PubMed  CAS  Google Scholar 

  • Brown MC, Lee DJ, Benson TE (2013a) Ultrastructure of spines and associated terminals on brainstem neurons controlling auditory input. Brain Res. doi:10.1016/j.brainres.2013.04.020.

  • Brown MC, Drottar M, Benson TE, Darrow KN (2013b) Commissural axons of the mouse cochlear nucleus. J Comp Neurol 521:1683–1696

    Google Scholar 

  • Card JP (2001) Pseudorabies virus neuroinvasiveness: a window into the functional organization of the brain. Adv Virus Res 56:39–71

    Article  PubMed  CAS  Google Scholar 

  • Card JP, Levitt P, Enquist LW (1998) Different patterns of neuronal infection after intracerebral injection of two strains of pseudorabies virus. J Virol 75:4434–4441

    Google Scholar 

  • Contreras RJ, Gomez MM, Norgren R (1980) Central origins of cranial nerve parasympathetic neurons in the rat. J Comp Neurol 190:373–394

    Article  PubMed  CAS  Google Scholar 

  • Darrow KN, Maison SF, Liberman MC (2006) Cochlear efferent feedback balances interaural sensitivity. Nat Neurosci 9:1474–1476

    Article  PubMed  CAS  Google Scholar 

  • Darrow KN, Drottar M, Brown MC (2012) Planar multipolar cells in the cochlear nucleus project to medial olivocochlear neurons in mouse. J Comp Neurol 520:1365–1375

    Article  PubMed  Google Scholar 

  • de Venecia RK, Liberman MC, Guinan JJ Jr, Brown MC (2005) Medial olivocochlear reflex interneurons are located in the posteroventral cochlear nucleus. J Comp Neurol 487:345–360

    Article  PubMed  Google Scholar 

  • Delano P, Elgueda D, Hamame C, Robles L (2007) Selective attention to visual stimuli reduces cochlear sensitivity in chinchillas. J Neurosci 27:4146–4153

    Article  PubMed  CAS  Google Scholar 

  • Doucet JR, Ryugo DK (1997) Projections from the ventral cochlear nucleus to the dorsal cochlear nucleus in rats. J Comp Neurol 385:245–264

    Article  PubMed  CAS  Google Scholar 

  • Doucet JR, Ryugo DK (2006) Structural and functional classes of multipolar cells in the ventral cochlear nucleus. Anat Rec A 288A:331–344

    Article  Google Scholar 

  • Ekstrand MI, Enquist LW, Pomeranz LE (2008) The alpha-herpes viruses: molecular pathfinders in nervous system circuits. Trends Mol Med 14:134–140

    Article  PubMed  CAS  Google Scholar 

  • Enquist LW, Card JP (2003) Recent advances in the use of neurotropic viruses for circuit analysis. Curr Opin Neurobiol 13:603–606

    Article  PubMed  CAS  Google Scholar 

  • Faye-Lund H (1986) Projection from the inferior colliculus to the superior olivary complex in the albino rat. Anat Embryol 175:35–52

    Article  PubMed  CAS  Google Scholar 

  • Godfrey DA, Kiang NYS, Norris BE (1975) Single unit activity in the posteroventral cochlear nucleus of the cat. J Comp Neurol 162:247–268

    Article  PubMed  CAS  Google Scholar 

  • Groff A, Liberman MC (2003) Modulation of cochlear afferent response by the lateral olivocochlear system: activation via electrical stimulation of the inferior colliculus. J Neurophysiol 90:3178–3200

    Article  PubMed  Google Scholar 

  • Guinan JJ Jr, Warr WB, Norris BE (1984) Topographic organization of the olivocochlear projections from the lateral and medial zones of the superior olivary complex. J Comp Neurol 226:21–27

    Article  PubMed  Google Scholar 

  • Hackney CM, Osen KK, Kolston J (1990) Anatomy of the cochlear nuclear complex of the guinea pig. Anat Embryol 182:123–149

    Article  PubMed  CAS  Google Scholar 

  • Horvath M, Ribari O, Repassy G, Toth IE, Boldogkoi Z, Palkovits M (2003) Intracochlear injection of pseudorabies virus labels descending auditory and monoaminerg projections to olivocochlear cells in guinea pig. Eur J Neurosci 18:1439–1447

    Article  PubMed  Google Scholar 

  • Hurley PA, Clarke M, Crook JM, Wis AK, Shepherd RK (2003) Cochlear immunochemistry—a new technique based on gelatin embedding. J Neurosci Meth 129:81–86

    Article  CAS  Google Scholar 

  • Liberman MC (1988) Response properties of cochlear efferent neurons: monaural vs. binaural stimulation and the effects of noise. J Neurophysiol 60:1779–1798

    PubMed  CAS  Google Scholar 

  • Liberman MC, Brown MC (1986) Physiology and anatomy of single olivocochlear neurons in the cat. Hear Res 24:17–36

    Article  PubMed  CAS  Google Scholar 

  • Liberman MC, Guinan JJ Jr (1998) Feedback control of the auditory periphery: anti-masking effects of middle ear muscles vs. olivocochlear efferents. J Commun Disord 31:471–483

    Article  PubMed  CAS  Google Scholar 

  • Loftus WC, Malmierca MS, Bishop DC, Oliver DL (2008) The cytoarchitecture of the inferior colliculus revisited: a common organization of the lateral cortex in rat and cat. Neuroscience 154:196–205

    Article  PubMed  CAS  Google Scholar 

  • Malmierca MS, Blackstad TW, Osen KK, Karagulle T, Molowny RL (1993) The central nucleus of the inferior colliculus in rat: a Golgi and computer reconstruction study of neuronal and laminar structure. J Comp Neurol 333:1–27

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM (1982) Principles of horseradish peroxidase neurohistochemistry and their applications for tracing neural pathways—axonal transport, enzyme histochemistry and light microscopic analysis. In: Mesulam M-M (ed) Tracing neural connections with horseradish peroxidase. Wiley, Chichester, pp 1–151

    Google Scholar 

  • Mukerji S, Windsor AM, Lee DJ (2010) Auditory brainstem circuits that mediate the middle ear muscle reflex. Trends Amplif 14:170–191

    Article  PubMed  Google Scholar 

  • Mulders WHAM, Robertson D (2000a) Evidence for direct cortical innervation of medial olivocochlear neurones in rats. Hear Res 144:65–72

    Article  PubMed  CAS  Google Scholar 

  • Mulders WHAM, Robertson D (2000b) Morphological relationships of peptidergic and noradrenergic nerve terminals to olivocochlear neurones in the rat. Hear Res 144:53–64

    Article  PubMed  CAS  Google Scholar 

  • Mulders WHAM, Robertson D (2001) Origin of the noradrenergic innervation of the superior olivary complex in the rat. J Chem Neuroanat 21:313–322

    Article  PubMed  CAS  Google Scholar 

  • Mulders WHAM, Robertson D (2005a) Noradrenergic modulation of brainstem nuclei alters cochlear neural output. Hear Res 204:147–155

    Article  PubMed  CAS  Google Scholar 

  • Mulders WHAM, Robertson D (2005b) Catecholaminergic innervation of guinea pig superior olivary complex. J Chem Neuroanat 30:230–242

    Article  PubMed  CAS  Google Scholar 

  • O-Donnell P, Lavin A, Enquist LW, Grace AA, Card JP (1997) Interconnected parallel circuits between rat nucleus accumbens and thalamus revealed by retrograde transynaptic transport of pseudorabies virus. J Neurosci 17:2143–2167

    CAS  Google Scholar 

  • Oliver DL, Huerta MF (1992) Inferior and superior colliculi. In: Webster DB, Popper AN, Fay RR (eds) The mammalian auditory pathway: neuroanatomy. Springer, New York, pp 168–221

    Chapter  Google Scholar 

  • Oliver DL, Morest DK (1984) The central nucleus of the inferior colliculus in the cat. J Comp Neurol 222:237–264

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL, Kuwada S, Yin TCT, Haberly LB, Henkel CK (1991) Dendritic and axonal morphology of HRP-injected neurons in the inferior colliculus of the cat. J Comp Neurol 303:75–100

    Article  PubMed  CAS  Google Scholar 

  • Osen KK (1969) Cytoarchitecture of the cochlear nuclei in the cat. J Comp Neurol 136:453–484

    Article  PubMed  CAS  Google Scholar 

  • Ota Y, Oliver DL, Dolan DF (2004) Frequency specific effects on cochlear responses during activation of the inferior colliculus in the guinea pig. J Neurophysiol 91:2185–2193

    Article  PubMed  CAS  Google Scholar 

  • Pagano M, Gauvreau K (2000) Principles of biostatistics, 2nd edn. Duxbury, Pacific Grove

    Google Scholar 

  • Pickard GE, Smeraski CA, Tomlinson CC, Banfield BW, Kaufman J, Wilcox CL, Enquist LW, Sollars PJ (2002) Intravitreal injection of the attenuated Pseudorabies virus PRV Bartha in infection of the hamster suprachiasmatic nucleus only by retrograde transsynaptic transport via autonomic circuits. J Neurosci 22:2701–2710

    Google Scholar 

  • Robertson D (1984) Horseradish peroxidase injection of physiologically characterized afferent and efferent neurons in the guinea pig spiral ganglion. Hear Res 15:113–121

    Article  PubMed  CAS  Google Scholar 

  • Ryugo DK, Fay RR, Popper AN (2011) Auditory and vestibular efferents, vol 38. Springer, New York

    Book  Google Scholar 

  • Smith BN, Banfield BW, Smeraski CA, Wilcox CL, Dudek FE, Enquist LW, Pickard GE (2000) Pseudorabies virus expressing enhanced green fluorescent protein: a tool for in vitro electrophysiological analysis of transsynaptically labeled neurons in identified central nervous system circuits. Proc Natl Acad Sci USA 97:9264–9269

    Google Scholar 

  • Spangler KM, Henkel CK, Miller IJ Jr (1982) Localization of the motor neurons to the tensor tympani muscle. Neurosci Lett 32:23–27

    Article  PubMed  CAS  Google Scholar 

  • Strutz J (1982) The origin of efferent innervation vestibular fibers in the guinea pig. Acta Otolaryngol 94:299–305

    Article  PubMed  CAS  Google Scholar 

  • Strutz J, Bielenberg K (1984) Efferent acoustic neurons within the lateral superior olivary nucleus of the guinea pig. Brain Res 299:174–177

    Article  PubMed  CAS  Google Scholar 

  • Thompson AM, Thompson GC (1991) Posteroventral cochlear nucleus projections to olivocochlear neurons. J Comp Neurol 303:267–285

    Article  PubMed  CAS  Google Scholar 

  • Thompson AM, Thompson GC (1993) Relationship of descending inferior colliculus projections to olivocochlear neurons. J Comp Neurol 335:402–412

    Article  PubMed  CAS  Google Scholar 

  • Thompson AM, Thompson GC (1995) Light microscopic evidence of serotoninergic projections to olivocochlear neurons in the bush baby (Otolemur garnettii). Brain Res 695:263–266

    Article  PubMed  CAS  Google Scholar 

  • Vetter DE, Mugnaini E (1992) Distribution and dendritic features of three groups of rat olivocochlear neurons. A study with two retrograde cholera toxin tracers. Anat Embryol 185:1–16

    Article  PubMed  CAS  Google Scholar 

  • Vetter DE, Saldana E, Mugnaini E (1993) Input from the inferior colliculus to medial olivocochlear neurons in the rat: a double label study with PHA-L and cholera toxin. Hear Res 70:173–186

    Article  PubMed  CAS  Google Scholar 

  • Warr WB (1969) Fiber degeneration following lesions in the posteroventral cochlear nucleus of the cat. Exp Neurol 23:140–155

    Article  PubMed  CAS  Google Scholar 

  • Windsor A, Roska B, Brown MC, Lee DJ (2007) Transneuronal analysis of the middle ear muscle reflex pathways using pseudorabies virus. Abstr Assoc Res Otolaryngol, #605

  • Winer JA (1992) The functional architecture of the medial geniculate body and the primary auditory cortex. In: Webster DB, Popper AN, Fay RR (eds) The mammalian auditory pathway: neuroanatomy. Springer, New York, pp 222–409

    Chapter  Google Scholar 

  • Woods CI, Azeredo WJ (1999) Noradrenergic and serotonergic projections to the superior olive: potential for modulation of olivocochlear neuron. Brain Res 836:9–18

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, Machado DG, Kim DO (2000) Projection of the marginal shell of the anteroventral cochlear nucleus to olivocochlear neurons in the cat. J Comp Neurol 420:127–138

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH grants DCD 1 RO1 DC01089 (to MCB) and DCD 1 K08 DC06285 (to DJL). We thank Dr. L.W. Enquist (Princeton University) for generously providing the PRV 152 (supported by an NIH Virus Center Grant P40RR018604), Dr. Thane E. Benson for helping with the micrographs, and Dr. M. Charles Liberman for comments on a previous version of the manuscript. Preliminary results of this study were presented in abstract form at the Association for Research in Otolaryngology Midwinter Meeting, February, 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Christian Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, M.C., Mukerji, S., Drottar, M. et al. Identification of Inputs to Olivocochlear Neurons Using Transneuronal Labeling with Pseudorabies Virus (PRV). JARO 14, 703–717 (2013). https://doi.org/10.1007/s10162-013-0400-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-013-0400-5

Keywords