Skip to main content
Log in

New Developments in Understanding the Mechanisms and Function of Spontaneous Electrical Activity in the Developing Mammalian Auditory System

  • Invited Review
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

In the mature mammalian auditory system, inner hair cells are responsible for converting sound-evoked vibrations into graded electrical responses, resulting in release of neurotransmitter and neuronal transmission via the VIIIth cranial nerve to auditory centres in the central nervous system. Before the cochlea can reliably respond to sound, inner hair cells are not merely immature quiescent pre-hearing cells, but instead are capable of generating ‘spontaneous’ calcium-based action potentials. The resulting calcium signal promotes transmitter release that drives action potential firing in developing spiral ganglion neurones. These early signalling events that occur before sound-evoked activity are thought to be important in guiding and refining the initial phases of development of the auditory circuits. This review will summarise our current knowledge of the mechanisms that underlie spontaneous action potentials in developing inner hair cells and how these events are triggered and regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  • Ballestero JA, Plazas PV, Kracun S, Gomez-Casati ME, Taranda J, Rothlin CV, Katz E, Millar NS, Elgoyhen AB (2005) Effects of quinine, quinidine, and chloroquine on alpha9alpha10 nicotinic cholinergic receptors. Mol Pharmacol 68(3):822–829

    PubMed  CAS  Google Scholar 

  • Beurg M, Safieddine S, Roux I, Bouleau Y, Petit C, Dulon D (2008) Calcium- and otoferlin-dependent exocytosis by immature outer hair cells. J Neurosci 28(8):1798–1803

    Article  PubMed  CAS  Google Scholar 

  • Beutner D, Moser T (2001) The presynaptic function of mouse cochlear inner hair cells during development of hearing. J Neurosci 21(13):4593–4599

    PubMed  CAS  Google Scholar 

  • Blankenship AG, Feller MB (2010) Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat Rev Neurosci 11(1):18–29

    Article  PubMed  CAS  Google Scholar 

  • Brandt A, Striessnig J, Moser T (2003) CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells. J Neurosci 23(34):10832–10840

    PubMed  CAS  Google Scholar 

  • Doi T, Ohmori H (1993) Acetylcholine increases intracellular Ca2+ concentration and hyperpolarizes the guinea-pig outer hair cell. Hear Res 67(1–2):179–188

    Article  PubMed  CAS  Google Scholar 

  • Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S (1994) Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79(4):705–715

    Article  PubMed  CAS  Google Scholar 

  • Elgoyhen AB, Vetter DE, Katz E, Rothlin CV, Heinemann SF, Boulter J (2001) alpha10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc Natl Acad Sci USA 98(6):3501–3506

    Article  PubMed  CAS  Google Scholar 

  • Erkman L, McEvilly RJ, Luo L, Ryan AK, Hooshmand F, O’Connell SM, Keithley EM, Rapaport DH, Ryan AF, Rosenfeld MG (1996) Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature 381(6583):603–606

    Article  PubMed  CAS  Google Scholar 

  • Frank T, Khimich D, Neef A, Moser T (2009) Mechanisms contributing to synaptic Ca2+ signals and their heterogeneity in hair cells. Proc Natl Acad Sci USA 106(11):4483–4488

    Article  PubMed  CAS  Google Scholar 

  • Friauf E, Lohmann C (1999) Development of auditory brainstem circuitry. Activity-dependent and activity-independent processes. Cell Tissue Res 297(2):187–195

    Article  PubMed  CAS  Google Scholar 

  • Fuchs PA, Murrow BW (1992) Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea. J Neurosci 12(3):800–809

    PubMed  CAS  Google Scholar 

  • Glowatzki E, Fuchs PA (2000) Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea. Science 288(5475):2366–2368

    Article  PubMed  CAS  Google Scholar 

  • Glowatzki E, Fuchs PA (2002) Transmitter release at the hair cell ribbon synapse. Nat Neurosci 5(2):147–154

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Casati ME, Wedemeyer C, Taranda J, Lipovsek M, Dalamon V, Elgoyhen AB, Katz E (2009) Electrical properties and functional expression of ionic channels in cochlear inner hair cells of mice lacking the alpha10 nicotinic cholinergic receptor subunit. J Assoc Res Otolaryngol 10(2):221–232

    Article  PubMed  Google Scholar 

  • Goutman JD, Glowatzki E (2007) Time course and calcium dependence of transmitter release at a single ribbon synapse. Proc Natl Acad Sci USA 104(41):16341–16346

    Article  PubMed  CAS  Google Scholar 

  • Goutman JD, Fuchs PA, Glowatzki E (2005) Facilitating efferent inhibition of inner hair cells in the cochlea of the neonatal rat. J Physiol 566(Pt 1):49–59

    Article  PubMed  CAS  Google Scholar 

  • Grant L, Fuchs P (2008) Calcium- and calmodulin-dependent inactivation of calcium channels in inner hair cells of the rat cochlea. J Neurophysiol 99(5):2183–2193

    Article  PubMed  Google Scholar 

  • Grant L, Yi E, Glowatzki E (2010) Two modes of release shape the postsynaptic response at the inner hair cell ribbon synapse. J Neurosci 30(12):4210–4220

    Article  PubMed  CAS  Google Scholar 

  • Hackney CM, Mahendrasingam S, Jones EM, Fettiplace R (2003) The distribution of calcium buffering proteins in the turtle cochlea. J Neurosci 23(11):4577–4589

    PubMed  CAS  Google Scholar 

  • Hackney CM, Mahendrasingam S, Penn A, Fettiplace R (2005) The concentrations of calcium buffering proteins in mammalian cochlear hair cells. J Neurosci 25(34):7867–7875

    Article  PubMed  CAS  Google Scholar 

  • Huberman AD, Feller MB, Chapman B (2008) Mechanisms underlying development of visual maps and receptive fields. Annu Rev Neurosci 31:479–509

    Article  PubMed  CAS  Google Scholar 

  • Johnson SL, Marcotti W (2008) Biophysical properties of CaV1.3 calcium channels in gerbil inner hair cells. J Physiol 586(4):1029–1042

    Article  PubMed  CAS  Google Scholar 

  • Johnson SL, Marcotti W, Kros CJ (2005) Increase in efficiency and reduction in Ca2+ dependence of exocytosis during development of mouse inner hair cells. J Physiol 563(Pt 1):177–191

    PubMed  CAS  Google Scholar 

  • Johnson SL, Adelman JP, Marcotti W (2007) Genetic deletion of SK2 channels in mouse inner hair cells prevents the developmental linearization in the Ca2+ dependence of exocytosis. J Physiol 583(Pt 2):631–646

    Article  PubMed  CAS  Google Scholar 

  • Johnson SL, Eckrich T, Kuhn S, Zampini V, Franz C, Ranatunga KM, Roberts TP, Masetto S, Knipper M, Kros CJ, Marcotti W (2011) Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells. Nat Neurosci 14(6):711–717

    Article  PubMed  CAS  Google Scholar 

  • Jones TA, Leake PA, Snyder RL, Stakhovskaya O, Bonham B (2007) Spontaneous discharge patterns in cochlear spiral ganglion cells before the onset of hearing in cats. J Neurophysiol 98(4):1898–1908

    Article  PubMed  Google Scholar 

  • Kandler K, Clause A, Noh J (2009) Tonotopic reorganization of developing auditory brainstem circuits. Nat Neurosci 12(6):711–717

    Article  PubMed  CAS  Google Scholar 

  • Katz E, Elgoyhen AB, Gomez-Casati ME, Knipper M, Vetter DE, Fuchs PA, Glowatzki E (2004) Developmental regulation of nicotinic synapses on cochlear inner hair cells. J Neurosci 24(36):7814–7820

    Article  PubMed  CAS  Google Scholar 

  • Kennedy HJ (2002) Intracellular calcium regulation in inner hair cells from neonatal mice. Cell Calcium 31(3):127–136

    Article  PubMed  CAS  Google Scholar 

  • Kennedy HJ, Meech RW (2002) Fast Ca2+ signals at mouse inner hair cell synapse: a role for Ca2+-induced Ca2+ release. J Physiol 539(Pt 1):15–23

    Article  PubMed  CAS  Google Scholar 

  • Kros CJ, Ruppersberg JP, Rusch A (1998) Expression of a potassium current in inner hair cells during development of hearing in mice. Nature 394(6690):281–284

    Article  PubMed  CAS  Google Scholar 

  • Leao RN, Naves MM, Leao KE, Walmsley B (2006a) Altered sodium currents in auditory neurons of congenitally deaf mice. Eur J Neurosci 24(4):1137–1146

    Article  PubMed  Google Scholar 

  • Leao RN, Sun H, Svahn K, Berntson A, Youssoufian M, Paolini AG, Fyffe RE, Walmsley B (2006b) Topographic organization in the auditory brainstem of juvenile mice is disrupted in congenital deafness. J Physiol 571(Pt 3):563–578

    Article  PubMed  CAS  Google Scholar 

  • Marcotti W, Johnson SL, Holley MC, Kros CJ (2003a) Developmental changes in the expression of potassium currents of embryonic, neonatal and mature mouse inner hair cells. J Physiol 548(Pt 2):383–400

    Article  PubMed  CAS  Google Scholar 

  • Marcotti W, Johnson SL, Rusch A, Kros CJ (2003b) Sodium and calcium currents shape action potentials in immature mouse inner hair cells. J Physiol 552(Pt 3):743–761

    Article  PubMed  CAS  Google Scholar 

  • Marcotti W, Johnson SL, Kros CJ (2004) A transiently expressed SK current sustains and modulates action potential activity in immature mouse inner hair cells. J Physiol 560(Pt 3):691–708

    Article  PubMed  CAS  Google Scholar 

  • Moody WJ (1998) Control of spontaneous activity during development. J Neurobiol 37(1):97–109

    Article  PubMed  CAS  Google Scholar 

  • Morley BJ, Simmons DD (2002) Developmental mRNA expression of the alpha10 nicotinic acetylcholine receptor subunit in the rat cochlea. Brain Res Dev Brain Res 139(1):87–96

    Article  PubMed  CAS  Google Scholar 

  • Moser T, Beutner D (2000) Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proc Natl Acad Sci USA 97(2):883–888

    Article  PubMed  CAS  Google Scholar 

  • Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA 79(21):6712–6716

    Article  PubMed  CAS  Google Scholar 

  • Nouvian R (2007) Temperature enhances exocytosis efficiency at the mouse inner hair cell ribbon synapse. J Physiol 584:535–542

    Google Scholar 

  • Oliver D, Plinkert P, Zenner HP, Ruppersberg JP (1997) Sodium current expression during postnatal development of rat outer hair cells. Pflugers Arch 434(6):772–778

    Article  PubMed  CAS  Google Scholar 

  • Oliver D, Klocker N, Schuck J, Baukrowitz T, Ruppersberg JP, Fakler B (2000) Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells. Neuron 26(3):595–601

    Article  PubMed  CAS  Google Scholar 

  • Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102(1):89–97

    Article  PubMed  CAS  Google Scholar 

  • Plazas PV, Katz E, Gomez-Casati ME, Bouzat C, Elgoyhen AB (2005) Stoichiometry of the alpha9alpha10 nicotinic cholinergic receptor. J Neurosci 25(47):10905–10912

    Article  PubMed  CAS  Google Scholar 

  • Roberts WM (1994) Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J Neurosci 14(5 Pt 2):3246–3262

    PubMed  CAS  Google Scholar 

  • Roux I, Wersinger E, McIntosh JM, Fuchs PA, Glowatzki E (2011) Onset of cholinergic efferent synaptic function in sensory hair cells of the rat cochlea. J Neurosci 31(42):15092–15101

    Article  PubMed  CAS  Google Scholar 

  • Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25:51–101

    Article  PubMed  CAS  Google Scholar 

  • Sgard F, Charpantier E, Bertrand S, Walker N, Caput D, Graham D, Bertrand D, Besnard F (2002) A novel human nicotinic receptor subunit, alpha10, that confers functionality to the alpha9-subunit. Mol Pharmacol 61(1):150–159

    Article  PubMed  CAS  Google Scholar 

  • Simmons DD (2002) Development of the inner ear efferent system across vertebrate species. J Neurobiol 53(2):228–250

    Article  PubMed  Google Scholar 

  • Simmons DD, Morley BJ (1998) Differential expression of the alpha 9 nicotinic acetylcholine receptor subunit in neonatal and adult cochlear hair cells. Brain Res Mol Brain Res 56(1–2):287–292

    Article  PubMed  CAS  Google Scholar 

  • Simmons DD, Morley BJ (2011) Spatial and temporal expression patterns of nicotinic acetylcholine alpha 9 and alpha 10 subunits in the embryonic and early postnatal inner ear. Neuroscience 194:326–336

    Article  PubMed  CAS  Google Scholar 

  • Simmons DD, Moulding HD, Zee D (1996) Olivocochlear innervation of inner and outer hair cells during postnatal maturation: an immunocytochemical study. Brain Res Dev Brain Res 95(2):213–226

    Article  PubMed  CAS  Google Scholar 

  • Sobkowicz HM, Emmerling MR (1989) Development of acetylcholinesterase-positive neuronal pathways in the cochlea of the mouse. J Neurocytol 18(2):209–224

    Article  PubMed  CAS  Google Scholar 

  • Sobkowicz HM, Rose JE, Scott GE, Slapnick SM (1982) Ribbon synapses in the developing intact and cultured organ of Corti in the mouse. J Neurosci 2(7):942–957

    PubMed  CAS  Google Scholar 

  • Tarabova B, Lacinova L, Engel J (2007) Effects of phenylalkylamines and benzothiazepines on Ca(v)1.3-mediated Ca2+ currents in neonatal mouse inner hair cells. Eur J Pharmacol 573(1–3):39–48

    Article  PubMed  CAS  Google Scholar 

  • Tritsch NX, Bergles DE (2010) Developmental regulation of spontaneous activity in the mammalian cochlea. J Neurosci 30(4):1539–1550

    Article  PubMed  CAS  Google Scholar 

  • Tritsch NX, Yi E, Gale JE, Glowatzki E, Bergles DE (2007) The origin of spontaneous activity in the developing auditory system. Nature 450(7166):50–55

    Article  PubMed  CAS  Google Scholar 

  • Tritsch NX, Rodriguez-Contreras A, Crins TT, Wang HC, Borst JG, Bergles DE (2010) Calcium action potentials in hair cells pattern auditory neuron activity before hearing onset. Nat Neurosci 13(9):1050–1052

    Article  PubMed  CAS  Google Scholar 

  • Walmsley B, Berntson A, Leao RN, Fyffe RE (2006) Activity-dependent regulation of synaptic strength and neuronal excitability in central auditory pathways. J Physiol 572(Pt 2):313–321

    Article  PubMed  CAS  Google Scholar 

  • Weisstaub N, Vetter DE, Elgoyhen AB, Katz E (2002) The alpha9alpha10 nicotinic acetylcholine receptor is permeable to and is modulated by divalent cations. Hear Res 167(1–2):122–135

    Article  PubMed  CAS  Google Scholar 

  • Yuhas WA, Fuchs PA (1999) Apamin-sensitive, small-conductance, calcium-activated potassium channels mediate cholinergic inhibition of chick auditory hair cells. J Comp Physiol A 185(5):455–462

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Dr Robert Meech, Dr Dawn Davies and Dr Krasimara Tsaneva-Atanasova for their helpful discussions and comments on the manuscript. Work in the author’s lab was supported by a project grant from the Wellcome Trust (072809).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen J. Kennedy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennedy, H.J. New Developments in Understanding the Mechanisms and Function of Spontaneous Electrical Activity in the Developing Mammalian Auditory System. JARO 13, 437–445 (2012). https://doi.org/10.1007/s10162-012-0325-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-012-0325-4

Keywords

Navigation