Skip to main content

Advertisement

Log in

Contractility in Type III Cochlear Fibrocytes Is Dependent on Non-muscle Myosin II and Intercellular Gap Junctional Coupling

  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

The cochlear spiral ligament is a connective tissue that plays diverse roles in normal hearing. Spiral ligament fibrocytes are classified into functional sub-types that are proposed to carry out specialized roles in fluid homeostasis, the mediation of inflammatory responses to trauma, and the fine tuning of cochlear mechanics. We derived a secondary sub-culture from guinea pig spiral ligament, in which the cells expressed protein markers of type III or “tension” fibrocytes, including non-muscle myosin II (nmII), α-smooth muscle actin (αsma), vimentin, connexin43 (cx43), and aquaporin-1. The cells formed extensive stress fibers containing αsma, which were also associated intimately with nmII expression, and the cells displayed the mechanically contractile phenotype predicted by earlier modeling studies. cx43 immunofluorescence was evident within intercellular plaques, and the cells were coupled via dye-permeable gap junctions. Coupling was blocked by meclofenamic acid (MFA), an inhibitor of cx43-containing channels. The contraction of collagen lattice gels mediated by the cells could be prevented reversibly by blebbistatin, an inhibitor of nmII function. MFA also reduced the gel contraction, suggesting that intercellular coupling modulates contractility. The results demonstrate that these cells can impart nmII-dependent contractile force on a collagenous substrate, and support the hypothesis that type III fibrocytes regulate tension in the spiral ligament-basilar membrane complex, thereby determining auditory sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  • Adams JC (2009) Immunocytochemical traits of type IV fibrocytes and their possible relations to cochlear function and pathology. J Assoc Res Otolaryngol 10:369–382

    Article  PubMed  Google Scholar 

  • Di WL, Rugg EL, Leigh IM, Kelsell DP (2001) Multiple epidermal connexins are expressed in different keratinocyte subpopulations including connexin 31. J Invest Dermatol 117:958–964

    Article  PubMed  CAS  Google Scholar 

  • Dreiling FJ, Henson MM, Henson OW Jr (2002) The presence and arrangement of type II collagen in the basilar membrane. Hear Res 166:166–180

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich HP, Gabbiani G, Meda P (2000) Cell coupling modulates the contraction of fibroblast-populated collagen lattices. J Cell Physiol 184:86–92

    Article  PubMed  CAS  Google Scholar 

  • Forge A, Becker D, Casalotti S, Edwards J, Marziano N, Nevill G (2003) Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessement of connexin composition in mammals. J Comp Neurol 467:207–231

    Article  PubMed  Google Scholar 

  • Furness DN, Lawton DM, Mahendrasingam S, Hodierne L, Jagger DJ (2009) Quantitative analysis of the expression of the glutamate-aspartate transporter and identification of functional glutamate uptake reveal a role for cochlear fibrocytes in glutamate homeostasis. Neuroscience 162:1307–1321

    Article  PubMed  CAS  Google Scholar 

  • Gratton MA, Schulte BA, Hazen-Martin DJ (1996) Characterization and development of an inner ear type I fibrocyte cell culture. Hear Res 99:71–78

    Article  PubMed  CAS  Google Scholar 

  • Grinnell F, Ho CH, Lin YC, Skuta G (1999) Differences in the regulation of fibroblast contraction of floating versus stressed collagen matrices. J Biol Chem 274:918–923

    Article  PubMed  CAS  Google Scholar 

  • Harks EG, de Roos AD, Peters PH, de Haan LH, Brouwer A, Ypey DL, van Zoelen EJ, Theuvenet AP (2001) Fenamates: a novel class of reversible gap junction blockers. J Pharmacol Exp Ther 298:1033–1041

    PubMed  CAS  Google Scholar 

  • Henson MM, Henson OW Jr (1988) Tension fibroblasts and the connective tissue matrix of the spiral ligament. Hear Res 35:237–258

    Article  PubMed  CAS  Google Scholar 

  • Henson MM, Henson OW Jr, Jenkins DB (1984) The attachment of the spiral ligament to the cochlear wall: anchoring cells and the creation of tension. Hear Res 16:231–242

    Article  PubMed  CAS  Google Scholar 

  • Henson MM, Burridge K, Fitzpatrick D, Jenkins DB, Pillsbury HC, Henson OW Jr (1985) Immunocytochemical localization of contractile and contraction associated proteins in the spiral ligament of the cochlea. Hear Res 20:207–214

    Article  PubMed  CAS  Google Scholar 

  • Hequembourg S, Liberman MC (2001) Spiral ligament pathology: a major aspect of age-related cochlear degeneration in C57BL/6 mice. J Assoc Res Otolaryngol 2:118–129

    PubMed  CAS  Google Scholar 

  • Huang D, Chen P, Chen S, Nagura M, Lim DJ, Lin X (2002) Expression patterns of aquaporins in the inner ear: evidence for concerted actions of multiple types of aquaporins to facilitate water transport in the cochlea. Hear Res 165:85–95

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Pecen P, Maddala R, Skiba NP, Pattabiraman PP, Epstein DL, Rao PV (2010) Characterization of cytoskeleton-enriched protein fraction of the trabecular meshwork and ciliary muscle cells. Invest Ophthalmol Vis Sci 51:6461–6471

    Article  PubMed  Google Scholar 

  • Jagger DJ, Forge A (2006) Compartmentalized and signal-selective gap junctional coupling in the hearing cochlea. J Neurosci 26:1260–1268

    Article  PubMed  CAS  Google Scholar 

  • Jagger DJ, Nevill G, Forge A (2010) The membrane properties of cochlear root cells are consistent with roles in potassium recirculation and spatial buffering. J Assoc Res Otolaryngol 11:435–448

    Article  Google Scholar 

  • Kelly JJ, Forge A, Jagger DJ (2011) Development of gap junctional intercellular communication within the lateral wall of the rat cochlea. Neuroscience 180:360–369

    Article  PubMed  CAS  Google Scholar 

  • Kimura S, Suzuki K, Sagara T, Nishida T, Yamamoto T, Kitazawa Y (2000) Regulation of connexin phosphorylation and cell-cell coupling in trabecular meshwork cells. Invest Ophthalmol Vis Sci 41:2222–2228

    PubMed  CAS  Google Scholar 

  • Kuhn B, Vater M (1997) The postnatal development of F-actin in tension fibroblasts of the spiral ligament of the gerbil cochlea. Hear Res 108:180–190

    Article  PubMed  CAS  Google Scholar 

  • Laird DW (2006) Life cycle of connexins in health and disease. Biochem J 394:527–543

    Article  PubMed  CAS  Google Scholar 

  • Li J, Verkman AS (2001) Impaired hearing in mice lacking aquaporin-4 water channels. J Biol Chem 276:31233–31237

    Article  PubMed  CAS  Google Scholar 

  • Liang F, Hu W, Schulte BA, Mao C, Qu C, Hazen-Martin DJ, Shen Z (2004) Identification and characterization of an L-type Cav1.2 channel in spiral ligament fibrocytes of gerbil inner ear. Brain Res Mol Brain Res 125:40–46

    Article  PubMed  CAS  Google Scholar 

  • Liang F, Schulte BA, Qu C, Hu W, Shen Z (2005) Inhibition of the calcium- and voltage-dependent big conductance potassium channel ameliorates cisplatin-induced apoptosis in spiral ligament fibrocytes of the cochlea. Neuroscience 135:263–271

    Article  PubMed  CAS  Google Scholar 

  • Limouze J, Straight AF, Mitchison T, Sellers JR (2004) Specificity of blebbistatin, an inhibitor of myosin II. J Muscle Res Cell Motil 25:337–341

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Lee OT, Minasi P, Wong J (2007) Isolation, culture, and characterization of human fetal trabecular meshwork cells. Curr Eye Res 32:43–50

    Article  PubMed  CAS  Google Scholar 

  • Liu YP, Zhao HB (2008) Cellular characterization of connexin26 and connnexin30 expression in the cochlear lateral wall. Cell Tissue Res 333:395–403

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Hashimoto-Torii K, Torii M, Ding C, Rakic P (2010) Gap junctions/hemichannels modulate interkinetic nuclear migration in the forebrain precursors. J Neurosci 30:4197–4209

    Article  PubMed  CAS  Google Scholar 

  • Moon SK, Park R, Lee HY, Nam GJ, Cha K, Andalibi A, Lim DJ (2006) Spiral ligament fibrocytes release chemokines in response to otitis media pathogens. Acta Otolaryngol 126:564–569

    Article  PubMed  CAS  Google Scholar 

  • Naidu RC, Mountain DC (2007) Basilar membrane tension calculations for the gerbil cochlea. J Acoust Soc Am 121:994–1002

    Article  PubMed  Google Scholar 

  • Ngo P, Ramalingam P, Phillips JA, Furuta GT (2006) Collagen gel contraction assay. Methods Mol Biol 341:103–109

    PubMed  CAS  Google Scholar 

  • Ohlemiller KK (2009) Mechanisms and genes in human strial presbycusis from animal models. Brain Res 1277:70–83

    Article  PubMed  CAS  Google Scholar 

  • Pan F, Mills SL, Massey SC (2007) Screening of gap junction antagonists on dye coupling in the rabbit retina. Vis Neurosci 24:609–618

    Article  PubMed  Google Scholar 

  • Papadopoulos MC, Saadoun S, Verkman AS (2008) Aquaporins and cell migration. Pflugers Arch 456:693–700

    Article  PubMed  CAS  Google Scholar 

  • Pearson RA, Luneborg NL, Becker DL, Mobbs P (2005) Gap junctions modulate interkinetic nuclear movement in retinal progenitor cells. J Neurosci 25:10803–10814

    Article  PubMed  CAS  Google Scholar 

  • Qu C, Liang F, Smythe NM, Schulte BA (2007) Identification of ClC-2 and CIC-K2 chloride channels in cultured rat type IV spiral ligament fibrocytes. J Assoc Res Otolaryngol 8:205–219

    Article  PubMed  Google Scholar 

  • Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS (2005) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434:786–792

    Article  PubMed  CAS  Google Scholar 

  • Sawada S, Takeda T, Kitano H, Takeuchi S, Okada T, Ando M, Suzuki M, Kakigi A (2003) Aquaporin-1 (AQP1) is expressed in the stria vascularis of rat cochlea. Hear Res 181:15–19

    Article  PubMed  CAS  Google Scholar 

  • Shen Z, Liang F, Hazen-Martin DJ, Schulte BA (2004) BK channels mediate the voltage-dependent outward current in type I spiral ligament fibrocytes. Hear Res 187:35–43

    Article  PubMed  CAS  Google Scholar 

  • Spicer SS, Schulte BA (1991) Differentiation of inner ear fibrocytes according to their ion transport related activity. Hear Res 56:53–64

    Article  PubMed  CAS  Google Scholar 

  • Spicer SS, Schulte BA (1996) The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res 100:80–100

    Article  PubMed  CAS  Google Scholar 

  • Stankovic KM, Adams JC, Brown D (1995) Immunolocalization of aquaporin CHIP in the guinea pig inner ear. Am J Physiol 269:C1450–C1456

    PubMed  CAS  Google Scholar 

  • Suko T, Ichimiya I, Yoshida K, Suzuki M, Mogi G (2000) Classification and culture of spiral ligament fibrocytes from mice. Hear Res 140:137–144

    Article  PubMed  CAS  Google Scholar 

  • Taylor RR, Jagger DJ, Forge A (2012) Defining the cellular environment in the organ of Corti following extensive hair cell loss: a basis for future sensory cell replacement in the cochlea. PLoS One 7:e30577

    Article  PubMed  CAS  Google Scholar 

  • Verkman AS (2003) Role of aquaporin water channels in eye function. Exp Eye Res 76:137–143

    Article  PubMed  CAS  Google Scholar 

  • Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10:778–790

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Veruki ML, Bukoreshtliev NV, Hartveit E, Gerdes HH (2010) Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels. Proc Natl Acad Sci U S A 107:17194–17199

    Article  PubMed  CAS  Google Scholar 

  • Wangemann P (2006) Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol 576:11–21

    Article  PubMed  CAS  Google Scholar 

  • Xia AP, Ikeda K, Katori Y, Oshima T, Kikuchi T, Takasaka T (2000) Expression of connexin 31 in the developing mouse cochlea. Neuroreport 11:2449–2453

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Rao PV (2005) Blebbistatin, a novel inhibitor of myosin II ATPase activity, increases aqueous humor outflow facility in perfused enucleated porcine eyes. Invest Ophthalmol Vis Sci 46:4130–4138

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Biotechnology and Biological Sciences Research Council (grant BB/D009669/1 to DJJ and AF) and Deafness Research UK (grant 358.CAR.DJ to DJ). JJK was supported by a Deafness Research UK Studentship (grant 403.EIP.DM). DJJ was supported by a Royal Society University Research Fellowship (grant 516002.K5746.KK). We thank Victoria Tovell (Institute of Ophthalmology, UCL) for helpful advice on the collagen lattice technique and cell viability assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Jagger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, J.J., Forge, A. & Jagger, D.J. Contractility in Type III Cochlear Fibrocytes Is Dependent on Non-muscle Myosin II and Intercellular Gap Junctional Coupling. JARO 13, 473–484 (2012). https://doi.org/10.1007/s10162-012-0322-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-012-0322-7

Keywords

Navigation