Skip to main content
Log in

Neural Coding of Sound Intensity and Loudness in the Human Auditory System

  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Inter-individual differences in loudness sensation of 45 young normal-hearing participants were employed to investigate how and at what stage of the auditory pathway perceived loudness, the perceptual correlate of sound intensity, is transformed into neural activation. Loudness sensation was assessed by categorical loudness scaling, a psychoacoustical scaling procedure, whereas neural activation in the auditory cortex, inferior colliculi, and medial geniculate bodies was investigated with functional magnetic resonance imaging (fMRI). We observed an almost linear increase of perceived loudness and percent signal change from baseline (PSC) in all examined stages of the upper auditory pathway. Across individuals, the slope of the underlying growth function for perceived loudness was significantly correlated with the slope of the growth function for the PSC in the auditory cortex, but not in subcortical structures. In conclusion, the fMRI correlate of neural activity in the auditory cortex as measured by the blood oxygen level-dependent effect appears to be more a linear reflection of subjective loudness sensation rather than a display of physical sound pressure level, as measured using a sound-level meter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  • Algom D, Marks LE (1990) Range and regression, loudness scales, and loudness processing: toward a context-bound psychophysics. J Exp Psychol Hum Percept Perform 16:706–727

    Article  PubMed  CAS  Google Scholar 

  • Bilecen D, Seifritz E, Radu EW, Schmid N, Wetzel S, Probst R, Scheffler K (2000) Cortical reorganization after acute unilateral hearing loss traced by fMRI. Neurology 54:765–767

    PubMed  CAS  Google Scholar 

  • Bilecen D, Seifritz E, Scheffler K, Henning J, Schulte AC (2002) Amplitopicity of the human auditory cortex: an fMRI study. NeuroImage 17:710–718

    Article  PubMed  Google Scholar 

  • Brechmann A, Baumgart F, Scheich H (2002) Sound-level-dependent representation of frequency modulations in human auditory cortex: a low-noise fMRI study. J Neurophysiol 87:423–433

    PubMed  Google Scholar 

  • Brett M, Anton JL, Valabregue R, Poline JB (2002a) Region of interest analysis using an SPM toolbox. In: 8th International Conference on Functional Mapping of the Human Brain (Sendai, Japan). Neuroimage 16(2): abstract 497

  • Brett M, Johnsrude IS, Owen AM (2002b) The problem of functional localization in the human brain. Nature Reviews Neurosci 3:243–249

    Article  CAS  Google Scholar 

  • Edmister WB, Talavage TM, Ledden PJ, Weisskoff RM (1999) Improved auditory cortex imaging using clustered volume acquisitions. Hum Brain Mapp 7:89–97

    Article  PubMed  CAS  Google Scholar 

  • Epstein M, Florentine M (2009) Binaural loudness summation for speech and tones presented via earphones and loudspeakers. Ear and Hearing 30:234–237

    Article  PubMed  Google Scholar 

  • Ernst SMA, Verhey JL, Uppenkamp S (2008) Spatial dissociation of changes of level and signal-to-noise ratio in auditory cortex for tones in noise. NeuroImage 43:321–328

    Article  PubMed  Google Scholar 

  • Ernst SMA, Uppenkamp S, Verhey JL (2010) Cortical representation of release from auditory masking. NeuroImage 49:835–842

    Article  PubMed  Google Scholar 

  • Fletcher H, Munson WM (1933) Loudness, its definition, measurement and calculation. J Acoust Soc Am 5:82–108

    Article  Google Scholar 

  • Gabriel B, Kollmeier B, Mellert V (1997) Influence of individual listener, measurement room and choice of test-tone levels on the shape of equal-loudness level contours. Acta Acustica united with Acustica 83:670–683

    Google Scholar 

  • Genovese CR, Noll DC, Eddy WF (1997) Estimating test–retest reliability in functional MR imaging. 1: Statistical methodology. Magn Reson Med 38:497–507

    Article  PubMed  CAS  Google Scholar 

  • Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44:162–167

    Article  PubMed  CAS  Google Scholar 

  • Griffiths TD, Uppenkamp S, Johnsrude I, Josephs O, Patterson RD (2001) Encoding of the temporal regularity of sound in the human brainstem. Nat Neurosci 4:633–637

    Article  PubMed  CAS  Google Scholar 

  • Grimm G, Hohmann V, Verhey JL (2002) Loudness of fluctuating sounds. Acta Acustica united with Acustica 88:359–368

    Google Scholar 

  • Guimaraes AR, Melcher JR, Baker JR, Ledden P, Rosen BR, Kiang NYS, Fullerton BC, Weisskoff RM (1998) Imaging subcortical auditory activity in humans. Hum Brain Mapp 6:33–41

    Article  PubMed  CAS  Google Scholar 

  • Gutschalk A, Patterson RD, Rupp A, Uppenkamp S, Scherg M (2002) Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. NeuroImage 15:207–216

    Article  PubMed  Google Scholar 

  • Hall DA, Haggard MP, Akeroyd MA, Palmer AR, Summerfield AQ, Elliott MR, Gurney EM, Bowtell RW (1999) “Sparse” temporal sampling in auditory fMRI. Hum Brain Mapp 7:213–223

    Article  PubMed  CAS  Google Scholar 

  • Hall DA, Haggard MP, Summerfield AQ, Akeroyd MA, Palmer AR, Bowtell RW (2001) Functional magnetic resonance imaging measurements of sound-level encoding in the absence of background scanner noise. J Acoust Soc Am 109:1559–1570

    Article  PubMed  CAS  Google Scholar 

  • Hart HC, Palmer AR, Hall DA (2002) Heschl’s gyrus is more sensitive to tone level than non-primary auditory cortex. Hear Res 171:177–190

    Article  PubMed  Google Scholar 

  • Hart HC, Hall DA, Palmer AR (2003) The sound-level-dependent growth in the extent of fMRI activation in Heschl’s gyrus is different for low- and high-frequency tones. Hear Res 179:104–112

    Article  PubMed  Google Scholar 

  • Harvey AK, Pattinson KT, Brooks JCW, Mayhew SD, Jenkinson M, Wise RG (2008) Brainstem functional magnetic resonance imaging: disentangling signal from physiological noise. J Magn Reson Imaging 28:1337–1344

    Article  PubMed  Google Scholar 

  • Hegerl U, Gallinat J, Mrowinski D (1994) Intensity dependence of auditory evoked dipole source activity. Int J Psychophysiol 17:1–13

    Article  PubMed  CAS  Google Scholar 

  • Heller O (1985) Hörfeldaudiometrie mit dem Verfahren der Kategorienunterteilung. Psychologische Beiträge 27:478–493

    Google Scholar 

  • Jäncke L, Shah NJ, Posse S, Grosse-Ryuken M, Müller-Gärtner HW (1998) Intensity coding of auditory stimuli: an fMRI study. Neuropsychologia 36:875–883

    Article  PubMed  Google Scholar 

  • Jäncke L, Mirzazade S, Shah NJ (1999) Attention modulates activity in the primary and the secondary auditory cortex: a functional magnetic resonance imaging study in human subjects. Neurosci Lett 266:125–128

    Article  PubMed  Google Scholar 

  • Juckel G, Schmidt LG, Rommelspacher H, Hegerl U (1995) The tridimensional personality questionnaire and the intensity dependence of auditory evoked dipole source activity. Biol Psychiatry 37:311–317

    Article  PubMed  CAS  Google Scholar 

  • Juckel G, Hegerl U, Giegling I, Mavrogiorgou P, Wutzler A, Schuhmacher C, Uhl I, Brüne M, Mulert C, Pogarell O, Rujescu D (2008) Association of 5-HT1B receptor polymorphisms with the loudness dependence of auditory evoked potentials in a community-based sample of healthy volunteers. Am J Med Genet Part B, Neuropsychiatric Genetics 147B:454–458

    Article  Google Scholar 

  • Kriegeskorte N, Simmons WK, Bellgowan PSF, Baker CI (2009) Circular analysis in systems neuroscience: the dangers of double dipping. Nat Neurosci 12:535–540

    Article  PubMed  CAS  Google Scholar 

  • Langers DRM, van Dijk P, Backes WH (2005) Lateralization, connectivity and plasticity in the human central auditory system. NeuroImage 28:490–499

    Article  PubMed  Google Scholar 

  • Langers DRM, van Dijk P, Schoemaker ES, Backes WH (2007) fMRI activation in relation to sound intensity and loudness. NeuroImage 35:709–718

    Article  PubMed  Google Scholar 

  • Lasota KJ, Ulmer JL, Firszt JB, Biswal BB, Daniels DL, Prost RW (2003) Intensity-dependent activation of the primary auditory cortex in functional magnetic resonance imaging. J Comput Assist Tomogr 27:213–218

    Article  PubMed  Google Scholar 

  • Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal. Ann Rev Physiol 66:735–769

    Article  CAS  Google Scholar 

  • Menzel D, Fastl H, Graf R, Hellbrück J (2008) Influence of vehicle color on loudness judgments. J Acoust Soc Am 123:2477–2479

    Article  PubMed  Google Scholar 

  • Mohr CM, King WM, Freeman AJ, Briggs RW, Leonard CM (1999) Influence of speech stimuli intensity on the activation of auditory cortex investigated with functional magnetic resonance imaging. J Acoust Soc Am 105:2738–2745

    Article  PubMed  CAS  Google Scholar 

  • Mulert C, Jäger L, Propp S, Karch S, Störmann S, Pogarell O, Möller HJ, Juckel G, Hegerl U (2005) Sound level dependence of the primary auditory cortex: simultaneous measurement with 61-channel EEG and fMRI. NeuroImage 28:49–58

    Article  PubMed  Google Scholar 

  • Pascoe DP (1978) An approach to hearing aid selection. Hearing Instruments 29:12–16

    Google Scholar 

  • Quirk GJ, Armony JL, LeDoux JE (1997) Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala. Neuron 19:613–624

    Article  PubMed  CAS  Google Scholar 

  • Röhl M, Uppenkamp S (2010) An auditory fMRI correlate of impulsivity. Psychiatry Res Neuroim 181:145–150

    Article  Google Scholar 

  • Röhl M, Kollmeier B, Uppenkamp S (2011) Spectral loudness summation takes place in the primary auditory cortex. Hum Brain Mapp 32:1483–1496

    Article  PubMed  Google Scholar 

  • Schneider P, Sluming V, Roberts N, Scherg M, Goebel R, Specht HJ, Dosch HG, Bleeck S, Stippich C, Rupp A (2005) Structural and functional asymmetry of lateral Heschl’s gyrus reflects pitch perception preference. Nat Neurosci 8:1241–1247

    Article  PubMed  CAS  Google Scholar 

  • Sigalovsky IS, Melcher JR (2006) Effects of sound level on fMRI activation in human brainstem, thalamic and cortical centers. Hear Res 215:67–76

    Article  PubMed  Google Scholar 

  • Stephens SD (1970) Personality and the slope of loudness function. Q J Exp Psychol 22:9–13

    Article  PubMed  CAS  Google Scholar 

  • Thirion B, Pinel P, Meriaux S, Roche A, Dehaene S, Poline JB (2007) Analysis of a large fMRI cohort: statistical and methodological issues for group analyses. NeuroImage 35:105–120

    Article  PubMed  Google Scholar 

  • Verhey JL, Uhlemann M (2008) Spectral loudness summation for sequences of short noise bursts. J Acoust Soc Am 123:925–934

    Article  PubMed  Google Scholar 

  • von Kriegstein K, Patterson RD, Griffiths TD (2008) Task-dependent modulation of medial geniculate body is behaviorally relevant for speech recognition. Curr Biol 18:1855–1859

    Article  Google Scholar 

  • Yang Y, Engelien A, Engelien W, Xu S, Stern E, Silbersweig DA (2000) A silent event-related functional MRI technique for brain activation studies without interference of scanner acoustic noise. Magn Reson Med 43:185–190

    Article  PubMed  CAS  Google Scholar 

  • Zhang CY, Zeng FG (1997) Loudness of dynamic stimuli in acoustic and electric hearing. J Acoust Soc Am 102:2925–2934

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Deutsche Forschungsgemeinschaft (Up 10/2-2, GRK-591/3). The authors would like to thank all volunteers for participating in this study. The helpful comments and suggestions by the reviewers and by J. Melcher as the associate editor are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Uppenkamp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röhl, M., Uppenkamp, S. Neural Coding of Sound Intensity and Loudness in the Human Auditory System. JARO 13, 369–379 (2012). https://doi.org/10.1007/s10162-012-0315-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-012-0315-6

Keywords

Navigation