Skip to main content
Log in

A Modeling Study of the Responses of the Lateral Superior Olive to Ipsilateral Sinusoidally Amplitude-Modulated Tones

  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

An Erratum to this article was published on 27 July 2017

Abstract

The lateral superior olive (LSO) is a brainstem nucleus that is classically understood to encode binaural information in high-frequency sounds. Previous studies have shown that LSO cells are sensitive to envelope interaural time difference in sinusoidally amplitude-modulated (SAM) tones (Joris and Yin, J Neurophysiol 73:1043–1062, 1995; Joris, J Neurophysiol 76:2137–2156, 1996) and that a subpopulation of LSO neurons exhibit low-threshold potassium currents mediated by Kv1 channels (Barnes-Davies et al., Eur J Neurosci 19:325–333, 2004). It has also been shown that in many LSO cells the average response rate to ipsilateral SAM tones decreases with modulation frequency above a few hundred Hertz (Joris and Yin, J Neurophysiol 79:253–269, 1998). This low-pass feature is not directly inherited from the inputs to the LSO since the response rate of these input neurons changes little with increasing modulation frequency. In the current study, an LSO cell model is developed to investigate mechanisms consistent with the responses described above, notably the emergent rate decrease with increasing frequency. The mechanisms explored included the effects of after-hyperpolarization (AHP) channels, the dynamics of low-threshold potassium channels (KLT), and the effects of background inhibition. In the model, AHP channels alone were not sufficient to induce the observed rate decrease at high modulation frequencies. The model also suggests that the background inhibition alone, possibly from the medial nucleus of the trapezoid body, can account for the small rate decrease seen in some LSO neurons, but could not explain the large rate decrease seen in other LSO neurons at high modulation frequencies. In contrast, both the small and large rate decreases were replicated when KLT channels were included in the LSO neuron model. These results support the conclusion that KLT channels may play a major role in the large rate decreases seen in some units and that background inhibition may be a contributing factor, a factor that could be adequate for small decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  • Adam TJ, Finlayson PG, Schwarz DW (2001) Membrane properties of principal neurons of the lateral superior olive. J Neurophysiol 86:922–934

    CAS  PubMed  Google Scholar 

  • Barnes-Davies M, Barker MC, Osmani F, Forsythe ID (2004) Kv1 currents mediate a gradient of principal neuron excitability across the tonotopic axis in the rat lateral superior olive. Eur J Neurosci 19:325–333

    Article  PubMed  Google Scholar 

  • Batra R, Kuwada S, Fitzpatrick DC (1997) Sensitivity to interaural temporal disparities of low- and high-frequency neurons in the superior olivary complex. I. Heterogeneity of responses. J Neurophysiol 78:1222–1236

    CAS  PubMed  Google Scholar 

  • Beraneck M, Pfanzelt S, Vassias I, Rohregger M, Vibert N, Vidal PP, Moore LE, Straka H (2007) Differential intrinsic response dynamics determine synaptic signal processing in frog vestibular neurons. J Neurosci 27:4283–4296

    Article  CAS  PubMed  Google Scholar 

  • Blum JJ, Reed MC (1991) Further studies of a model for azimuthal encoding: lateral superior olive neuron response curves and developmental processes. J Acoust Soc Am 90:1968–1978

    Article  CAS  PubMed  Google Scholar 

  • Boudreau JC, Tsuchitani C (1968) Binaural interaction in the cat superior olive S segment. J Neurophysiol 31:442–454

    CAS  PubMed  Google Scholar 

  • Boudreau JC, Tsuchitani C (1970) Cat superior olive S-segment cell discharge to tonal stimulation. Contrib Sens Physiol 4:143–213

    Article  CAS  PubMed  Google Scholar 

  • Bourk TR (1976) Electrical response of neural units in the anteroventral cochlear nucleus of the cat. PhD Dissertation, MIT, Cambridge

    Google Scholar 

  • Cant NB, Casseday JH (1986) Projections from the anteroventral cochlear nucleus to the lateral and medial superior olivary nuclei. J Comp Neurol 247:457–476

    Article  CAS  PubMed  Google Scholar 

  • Carney LH (1993) A model for the responses of low-frequency auditory-nerve fibers in cat. J Acoust Soc Am 93:401–417

    Article  CAS  PubMed  Google Scholar 

  • Colburn HS, Moss PJ (1981) Projections to the lateral and medial superior olivary nuclei from the spherical and globular bushy cells of the anteroventral cochlear nucleus. In: Syka J, Aitkin L (eds) Neuronal mechanisms of hearing. Plenum, New York, pp 283–288

    Chapter  Google Scholar 

  • Day ML, Doiron B, Rinzel J (2008) Subthreshold K + channel dynamics interact with stimulus spectrum to influence temporal coding in an auditory brain stem model. J Neurophysiol 99:534–544

    Article  PubMed  Google Scholar 

  • Dreyer A, Delgutte B (2006) Phase locking of auditory-nerve fibers to the envelopes of high-frequency sounds: implications for sound localization. J Neurophysiol 96:2327–2341

    Article  PubMed  PubMed Central  Google Scholar 

  • Finlayson PG, Caspary DM (1991) Low-frequency neurons in the lateral superior olive exhibit phase-sensitive binaural inhibition. J Neurophysiol 65:598–605

    CAS  PubMed  Google Scholar 

  • Frisina RD, Smith RL, Chamberlain SC (1990a) Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement. Hear Res 44:99–122

    Article  CAS  PubMed  Google Scholar 

  • Frisina RD, Smith RL, Chamberlain SC (1990b) Encoding of amplitude modulation in the gerbil cochlear nucleus: II. Possible neural mechanisms. Hear Res 44:123–141

    Article  CAS  PubMed  Google Scholar 

  • Gai Y, Doiron B, Rinzel J (2010) Slope-based stochastic resonance: how noise enables phasic neurons to encode slow signals. PLoS Comput Biol 6:e1000825

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:613–636

    CAS  PubMed  Google Scholar 

  • Hewitt MJ, Meddis R (1994) A computer model of amplitude-modulation sensitivity of single units in the inferior colliculus. J Acoust Soc Am 95:2145–2159

    Article  CAS  PubMed  Google Scholar 

  • Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179–1209

    Article  CAS  PubMed  Google Scholar 

  • Johnson DH, Dabak A, Tsuchitani C (1990) Function-based modeling of binaural processing: interaural level. Hear Res 49:301–319

    Article  CAS  PubMed  Google Scholar 

  • Joris PX (1996) Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive. J Neurophysiol 76:2137–2156

    CAS  PubMed  Google Scholar 

  • Joris PX, Yin TC (1992) Responses to amplitude-modulated tones in the auditory nerve of the cat. J Acoust Soc Am 91:215–232

    Article  CAS  PubMed  Google Scholar 

  • Joris PX, Yin TC (1995) Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences. J Neurophysiol 73:1043–1062

    CAS  PubMed  Google Scholar 

  • Joris PX, Yin TC (1998) Envelope coding in the lateral superior olive. III. Comparison with afferent pathways. J Neurophysiol 79:253–269

    CAS  PubMed  Google Scholar 

  • Leao KE, Leao RN, Sun H, Fyffe RE, Walmsley B (2006) Hyperpolarization-activated currents are differentially expressed in mice brainstem auditory nuclei. J Physiol 576:849–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Poveda EA, Meddis R (2001) A human nonlinear cochlear filterbank. J Acoust Soc Am 110:3107–3118

    Article  CAS  PubMed  Google Scholar 

  • Manis PB, Marx SO (1991) Outward currents in isolated ventral cochlear nucleus neurons. J Neurosci 11:2865–2880

    CAS  PubMed  Google Scholar 

  • Melcher JR (1993) The cellular generators of the brainstem auditory evoked potential. PhD Dissertation, MIT, Cambridge

    Google Scholar 

  • Mountain DC, Cody AR (1999) Multiple modes of inner hair cell stimulation. Hear Res 132:1–14

    Article  CAS  PubMed  Google Scholar 

  • Nelson PC, Carney LH (2004) A phenomenological model of peripheral and central neural responses to amplitude-modulated tones. J Acoust Soc Am 116:2173–2186

    Article  PubMed  PubMed Central  Google Scholar 

  • Reed MC, Blum JJ (1990) A model for the computation and encoding of azimuthal information by the lateral superior olive. J Acoust Soc Am 88:1442–1453

    Article  CAS  PubMed  Google Scholar 

  • Rhode WS, Greenberg S (1994) Encoding of amplitude modulation in the cochlear nucleus of the cat. J Neurophysiol 71:1797–1825

    CAS  PubMed  Google Scholar 

  • Rothman JS, Manis PB (2003a) Differential expression of three distinct potassium currents in the ventral cochlear nucleus. J Neurophysiol 89:3070–3082

    Article  CAS  PubMed  Google Scholar 

  • Rothman JS, Manis PB (2003b) Kinetic analyses of three distinct potassium conductances in ventral cochlear nucleus neurons. J Neurophysiol 89:3083–3096

    Article  CAS  PubMed  Google Scholar 

  • Rothman JS, Manis PB (2003c) The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons. J Neurophysiol 89:3097–3113

    Article  CAS  PubMed  Google Scholar 

  • Ryugo DK, Sento S (1991) Synaptic connections of the auditory nerve in cats: relationship between endbulbs of held and spherical bushy cells. J Comp Neurol 305:35–48

    Article  CAS  PubMed  Google Scholar 

  • Sanes DH (1990) An in vitro analysis of sound localization mechanisms in the gerbil lateral superior olive. J Neurosci 10:3494–3506

    CAS  PubMed  Google Scholar 

  • Smith PH, Joris PX, Yin TC (1993) Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: evidence for delay lines to the medial superior olive. J Comp Neurol 331:245–260

    Article  CAS  PubMed  Google Scholar 

  • Smith PH, Joris PX, Yin TC (1998) Anatomy and physiology of principal cells of the medial nucleus of the trapezoid body (MNTB) of the cat. J Neurophysiol 79:3127–3142

    CAS  PubMed  Google Scholar 

  • Smith PH, Joris PX, Carney LH, Yin TC (1991) Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat. J Comp Neurol 304:387–407

    Article  CAS  PubMed  Google Scholar 

  • Tollin DJ, Yin TC (2005) Interaural phase and level difference sensitivity in low-frequency neurons in the lateral superior olive. J Neurosci 25:10648–10657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchitani C (1988a) The inhibition of cat lateral superior olive unit excitatory responses to binaural tone bursts. II. The sustained discharges. J Neurophysiol 59:184–211

    CAS  PubMed  Google Scholar 

  • Tsuchitani C (1988b) The inhibition of cat lateral superior olive unit excitatory responses to binaural tone bursts. I. The transient chopper response. J Neurophysiol 59:164–183

    CAS  PubMed  Google Scholar 

  • Tsuchitani C, Boudreau JC (1966) Single unit analysis of cat superior olive S segment with tonal stimuli. J Neurophysiol 29:684–697

    CAS  PubMed  Google Scholar 

  • Zacksenhouse M, Johnson DH, Williams J, Tsuchitani C (1998) Single-neuron modeling of LSO unit responses. J Neurophysiol 79:3098–3110

    CAS  PubMed  Google Scholar 

  • Zhou Y, Colburn HS (2010) A modeling study of the effects of membrane afterhyperpolarization on spike interval statistics and on ILD encoding in the lateral superior olive. J Neurophysiol 103:2355–2371

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH-NIDCD DC00100. We thank three anonymous reviewers for many useful suggestions.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Steven Colburn.

Additional information

An erratum to this article can be found online at http://dx.doi.org/10.1007/s10162-017-0635-7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Colburn, H.S. A Modeling Study of the Responses of the Lateral Superior Olive to Ipsilateral Sinusoidally Amplitude-Modulated Tones. JARO 13, 249–267 (2012). https://doi.org/10.1007/s10162-011-0300-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-011-0300-5

Keywords

Navigation