Advertisement

Invertebrate Neuroscience

, Volume 13, Issue 2, pp 107–123 | Cite as

Molecular basis of the dopaminergic system in the cricket Gryllus bimaculatus

  • Takayuki Watanabe
  • Hisayo Sadamoto
  • Hitoshi Aonuma
Original Paper

Abstract

In insects, dopamine modulates various aspects of behavior such as learning and memory, arousal and locomotion, and is also a precursor of melanin. To elucidate the molecular basis of the dopaminergic system in the field cricket Gryllus bimaculatus DeGeer, we identified genes involved in dopamine biosynthesis, signal transduction, and dopamine re-uptake in the cricket. Complementary DNA of two isoforms of tyrosine hydroxylase (TH), which convert tyrosine into l-3,4-dihydroxyphenylalanine, was isolated from the cricket brain cDNA library. In addition, four dopamine receptor genes (Dop1, Dop2, Dop3, and DopEcR) and a high-affinity dopamine transporter gene were identified. The two TH isoforms contained isoform-specific regions in the regulatory ACT domain and showed differential expression patterns in different tissues. In addition, the dopamine receptor genes had a receptor subtype-specific distribution: the Dop1, Dop2, and DopEcR genes were broadly expressed in various tissues at differential expression levels, and the Dop3 gene was restrictedly expressed in neuronal tissues and the testicles. Our findings provide a fundamental basis for understanding the dopaminergic regulation of diverse physiological processes in the cricket.

Keywords

Dopamine Tyrosine hydroxylase Dopamine receptors High-affinity dopamine transporter Gryllus bimaculatus 

Notes

Acknowledgments

We thank Dr. Miriam Henze (Lunds Universitet, Sweden) for reviewing. This research was partly supported by Grant-in-Aid for JSPS Fellows to T. Watanabe, Grants-in-Aid for Scientific Research (KAKENHI) from the MEXT, Scientific Research on Priority Areas (Area No. 454) to H. Aonuma (No. 17075001) and from the JSPS to H. Aonuma (No. 23300113).

Conflict of interest

None.

References

  1. Ali D (1997) The aminergic and peptidergic innervation of insect salivary glands. J Exp Biol 200:941–949Google Scholar
  2. Andretic R, Kim YC, Jones FS, Han KA, Greenspan RJ (2008) Drosophila D1 dopamine receptor mediates caffeine-induced arousal. Proc Natl Acad Sci USA 105:20392–20397PubMedCrossRefGoogle Scholar
  3. Aonuma H, Watanabe T (2012) Changes in the content of brain biogenic amine associated with early colony establishment in the queen of the ant, Formica japonica. PLoS One 7:e43377PubMedCrossRefGoogle Scholar
  4. Beggs KT, Hamilton IS, Kurshan PT, Mustard JA, Mercer AR (2005) Characterization of a D2-like dopamine receptor (AmDOP3) in honey bee, Apis mellifera. Insect Biochem Mol Biol 35:873–882PubMedCrossRefGoogle Scholar
  5. Beggs KT, Tyndall JD, Mercer AR (2011) Honey bee dopamine and octopamine receptors linked to intracellular calcium signaling have a close phylogenetic and pharmacological relationship. PLoS ONE 6:e26809PubMedCrossRefGoogle Scholar
  6. Birman S, Morgan B, Anzivino M, Hirsh J (1994) A novel and major isoform of tyrosine hydroxylase in Drosophila is generated by alternative RNA processing. J Biol Chem 269:26559–26567PubMedGoogle Scholar
  7. Bloch G, Simon T, Robinson GE, Hefetz A (2000) Brain biogenic amines and reproductive dominance in bumble bees (Bombus terrestris). J Comp Physiol A 186:261–268PubMedCrossRefGoogle Scholar
  8. Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362PubMedCrossRefGoogle Scholar
  9. Brandes C, Sugawa M, Menzel R (1990) High-performance liquid chromatography (HPLC) measurement of catecholamines in single honeybee brains reveals caste-specifc differences between worker bees and queens in Apis mellifera. Comp Biochem Physiol 97:53–57Google Scholar
  10. Carrington E, Kokay IC, Duthie J, Lewis R, Mercer AR (2007) Manipulating the light/dark cycle: effects on dopamine levels in optic lobes of the honey bee (Apis mellifera) brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193:167–180PubMedCrossRefGoogle Scholar
  11. Chen R, Wei H, Hill ER, Chen L, Jiang L, Han DD, Gu HH (2007) Direct evidence that two cysteines in the dopamine transporter form a disulfide bond. Mol Cell Biochem 298:41–48PubMedCrossRefGoogle Scholar
  12. Chintapalli VR, Wang J, Dow JA (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 39:715–720PubMedCrossRefGoogle Scholar
  13. Cooper RL, Neckameyer WS (1999) Dopaminergic modulation of motor neuron activity and neuromuscular function in Drosophila melanogaster. Comp Biochem Physiol B: Biochem Mol Biol 122:199–210CrossRefGoogle Scholar
  14. Dombroski TCD, Simoes ZLP, Bitondi MMG (2003) Dietary dopamine causes ovary activation in queenless Apis mellifera workers. Apidologie 34:281–289CrossRefGoogle Scholar
  15. Draper I, Kurshan PT, McBride E, Jackson FR, Kopin AS (2007) Locomotor activity is regulated by D2-like receptors in Drosophila: an anatomic and functional analysis. Dev Neurobiol 67:378–393PubMedCrossRefGoogle Scholar
  16. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2011) Geneious v5.4, Available from http://www.geneious.com/
  17. Dunkley PR, Bobrovskaya L, Graham ME, von Nagy-Felsobuki EI, Dickson PW (2004) Tyrosine hydroxylase phosphorylation: regulation and consequences. J Neurochem 91:1025–1043PubMedCrossRefGoogle Scholar
  18. Evans PD (1980) Biogenic amines in the insect nervous system. Adv Insect Physiol 15:317–473CrossRefGoogle Scholar
  19. Friggi-Grelin F, Iché M, Birman S (2003) Tissue-specific developmental requirements of Drosophila tyrosine hydroxylase isoforms. Genesis 35:260–269PubMedCrossRefGoogle Scholar
  20. Gallant P, Malutan T, McLean H, Verellen L, Caveney S, Donly C (2003) Functionally distinct dopamine and octopamine transporters in the CNS of the cabbage looper moth. Eur J Biochem 270:664–674PubMedCrossRefGoogle Scholar
  21. Gole JWD, Orr GL, Downer RGH (1987) Pharmacology of octopamine-, dopamine-, and 5-hydroxytryptamine-stimulated cyclic AMP accumulation in the corpus cardiacum of the American cockroach, Periplaneta americana L. Arch Insect Biochem Physiol 5:119–128CrossRefGoogle Scholar
  22. Gray DC, Ginsborg BL, House CR (1984) Cyclic AMP as a possible mediator of dopamine stimulation of cockroach gland cells. Q J Exp Physiol 69:171–186PubMedGoogle Scholar
  23. Grewe CW, Kebabian JW (1982) Dopamine stimulates production of cyclic AMP by the salivary gland of the cockroach, Nauphoeta cinerea. Cell Mol Neurobiol 2:65–69CrossRefGoogle Scholar
  24. Hamada A, Miyawaki K, Honda-sumi E, Tomioka K, Mito T, Ohuchi H, Noji S (2009) Loss-of-function analyses of the fragile X-related and dopamine receptor genes by RNA interference in the cricket Gryllus bimaculatus. Dev Dyn 238:2025–2033PubMedCrossRefGoogle Scholar
  25. Han KA, Millar NS, Grotewiel MS, Davis RL (1996) DAMB, a novel dopamine receptor expressed specifically in Drosophila mushroom bodies. Neuron 16:1127–1135PubMedCrossRefGoogle Scholar
  26. Harano K, Sasaki K, Nagao T (2005) Depression of brain dopamine and its metabolite after mating in the European honeybee (Apis mellifera) queens. Naturwissenschaften 92:310–313PubMedCrossRefGoogle Scholar
  27. Haycock JW (2002) Species differences in the expression of multiple tyrosine hydroxylase protein isoforms. J Neurochem 81:947–953PubMedCrossRefGoogle Scholar
  28. Helle J, Dircksen H, Eckert M, Nässel DR, Spörhase-Eichmann U, Schürmann FW (1995) Putative neurohemal areas in the peripheral nervous system of an insect, Gryllus bimaculatus, revealed by immunocytochemistry. Cell Tissue Res 281:43–61PubMedGoogle Scholar
  29. Hörner M, Sporhaseeichmann U, Helle J, Venus B, Schurmann FW (1995) The distribution of neurons immunoreactive for β-tyrosine hydroxylase, dopamine and serotonin in the ventral nerve cord of the cricket, Gryllus bimaculatus. Cell Tissue Res 280:583–604CrossRefGoogle Scholar
  30. Klemm N (1972) Monoamine-containing nervous fibres in foregut and salivary gland of the desert locust, Schistocerca gregaria Forskal (Orthoptera, Acrididae). Comp Biochem Physiol, A: Comp Physiol 43:207–211CrossRefGoogle Scholar
  31. Klemm N (1979) Biogenic amines in the stomatogastric nervous system of several insect orders. Entomol Gen 5:113–121Google Scholar
  32. Kurshan PT, Hamilton IS, Mustard JA, Mercer AR (2003) Developmental changes in expression patterns of two dopamine receptor genes in mushroom bodies of the honeybee, Apis mellifera. J Comp Neurol 466:91–103Google Scholar
  33. Lange AB, Chan K (2008) Dopaminergic control of foregut contractions in Locusta migratoria. J Insect Physiol 54:222–230PubMedCrossRefGoogle Scholar
  34. Lebestky T, Chang JS, Dankert H, Zelnik L, Kim YC, Han KA, Wolf FW, Perona P, Anderson DJ (2009) Two different forms of arousal in Drosophila are oppositely regulated by the dopamine D1 receptor ortholog DopR via distinct neural circuits. Neuron 64:522–536PubMedCrossRefGoogle Scholar
  35. Lewis DA, Melchitzky DS, Haycock JW (1993) Four isoforms of tyrosine hydroxylase are expressed in human brain. Neuroscience 54:477–492PubMedCrossRefGoogle Scholar
  36. Lewis DA, Melchitzky DS, Haycock JW (1994) Expression and distribution of two isoforms of tyrosine hydroxylase in macaque monkey brain. Brain Res 656:1–13PubMedCrossRefGoogle Scholar
  37. Marg S, Walz B, Blenau W (2004) The effects of dopamine receptor agonists and antagonists on the secretory rate of cockroach (Periplaneta americana) salivary glands. J Insect Physiol 50:821–830PubMedCrossRefGoogle Scholar
  38. Mitsumasu K, Ohta H, Tsuchihara K, Asaoka K, Ozoe Y, Niimi T, Yamashita O, Yaginuma T (2008) Molecular cloning and characterization of cDNAs encoding dopamine receptor-1 and -2 from brain -suboesophageal ganglion of the silkworm, Bombyx mori. Insect Mol Biol 17:185–195Google Scholar
  39. Mizunami M, Unoki S, Mori Y, Hirashima D, Hatano A, Matsumoto Y (2009) Roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in an insect. BMC Biol 7:46PubMedCrossRefGoogle Scholar
  40. Mustard JA, Beggs KT, Mercer AR (2005) Molecular biology of the invertebrate dopamine receptors. Arch Insect Biochem Physiol 59:103–117PubMedCrossRefGoogle Scholar
  41. Mustard JA, Pham PM, Smith BH (2010) Modulation of motor behavior by dopamine and the D1-like dopamine receptor AmDOP2 in the honey bee. J Insect Physiol 56:422–430PubMedCrossRefGoogle Scholar
  42. Nagatsu T (1989) The human tyrosine hydroxylase gene. Cell Mol Neurobiol 9:313–321PubMedCrossRefGoogle Scholar
  43. Nakamura T, Yoshizaki M, Ogawa S, Okamoto H, Shinmyo Y, Bando T, Ohuchi H, Noji S, Mito T (2010) Imaging of transgenic cricket embryos reveals cell movements consistent with a syncytial patterning mechanism. Curr Biol 20:1641–1647PubMedCrossRefGoogle Scholar
  44. Nakashima A, Mori K, Suzuki T, Kurita H, Otani M, Nagatsu T, Ota A (1999) Dopamine inhibition of human tyrosine hydroxylase type 1 is controlled by the specific portion in the N-terminus of the enzyme. J Neurochem 72:2145–2153PubMedCrossRefGoogle Scholar
  45. Nakashima A, Hayashi N, Mori K, Kaneko YS, Nagatsu T, Ota A (2000) Positive charge intrinsic to Arg37-Arg38 is critical for dopamine inhibition of the catalytic activity of human tyrosine hydroxylase type 1. FEBS Lett 465:59–63PubMedCrossRefGoogle Scholar
  46. Nakashima A, Hayashi N, Kaneko YS, Mori K, Sabban EL, Nagatsu T, Ota A (2009) Role of N-terminus of tyrosine hydroxylase in the biosynthesis of catecholamines. J Neural Transm 116:1355–1362PubMedCrossRefGoogle Scholar
  47. Nakashima A, Mori K, Kaneko YS, Hayashi N, Nagatsu T, Ota A (2011) Phosphorylation of the N-terminal portion of tyrosine hydroxylase triggers proteasomal digestion of the enzyme. Biochem Biophys Res Commun 407:343–347PubMedCrossRefGoogle Scholar
  48. Neckameyer WS (1996) Multiple roles for dopamine in Drosophila development. Dev Biol 176:209–219PubMedCrossRefGoogle Scholar
  49. Ninomiya Y, Hayakawa Y (2007) Insect cytokine, growth-blocking peptide, is a primary regulator of melanin-synthesis enzymes in armyworm larval cuticle. FEBS J 274:1768–1777PubMedCrossRefGoogle Scholar
  50. O’Dowd BF, Nguyen T, Jung BP, Marchese A, Cheng R, Heng HH, Kolakowski LF Jr, Lynch KR, George SR (1997) Cloning and chromosomal mapping of four putative novel human G-protein-coupled receptor genes. Gene 187:75–81PubMedCrossRefGoogle Scholar
  51. Passier PC, Vullings HG, Diederen JH, Van der Horst DJ (1995) Modulatory effects of biogenic amines on adipokinetic hormone secretion from locust corpora cardiaca in vitro. Gen Comp Endocrinol 97:231–238PubMedCrossRefGoogle Scholar
  52. Pastor D, Piulachs MD, Cassier P, André M, Bellés X (1991) Etude in vivo et in vitro de l’action de la dopamine sur la croissance des ovocytes et la production d’hormone juvénile chez Blattella germanica (L.) (Dictyoptera; Blattellidae). C R Acad Sci III 313:207–212PubMedGoogle Scholar
  53. Rao VT, Siddiqui SZ, Prichard RK, Forrester SG (2009) A dopamine-gated ion channel (HcGGR3*) from Haemonchus contortus is expressed in the cervical papillae and is associated with macrocyclic lactone resistance. Mol Biochem Parasitol 166:54–61PubMedCrossRefGoogle Scholar
  54. Reverte CG, Ahearn MD, Hake LE (2001) CPEB degradation during Xenopus oocyte maturation requires a PEST domain and the 26S proteasome. Dev Biol 231:447–458PubMedCrossRefGoogle Scholar
  55. Rietdorf K, Blenau W, Walz B (2005) Protein secretion in cockroach salivary glands requires an increase in intracellular cAMP and Ca2+ concentrations. J Insect Physiol 51:1083–1091PubMedCrossRefGoogle Scholar
  56. Rillich J, Stevenson PA (2011) Winning fights induces hyperaggression via the action of the biogenic amine octopamine in crickets. PLoS One 6:e28891PubMedCrossRefGoogle Scholar
  57. Rillich J, Schildberger K, Stevenson PA (2011) Octopamine and occupancy: an aminergic mechanism for intruder-resident aggression in crickets. Proc Biol Sci 278:1873–1880PubMedCrossRefGoogle Scholar
  58. Ringstad N, Abe N, Horvitz HR (2009) Ligand-gated chloride channels are receptors for biogenic amines in C. elegans. Science 325:96–100PubMedCrossRefGoogle Scholar
  59. Roeder T (2005) Tyramine and octopamine: ruling behavior and metabolism. Annu Rev Entomol 50:447–477PubMedCrossRefGoogle Scholar
  60. Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364–368PubMedCrossRefGoogle Scholar
  61. Samaranayaka M (1976) Possible involvement of monoamines in the release of adipokinetic hormone in the locust Schistocerca gregaria. J Exp Biol 65:415–425PubMedGoogle Scholar
  62. Sasaki K, Yamasaki K, Tsuchida K, Nagao T (2009) Gonadotropic effects of dopamine in isolated workers of the primitively eusocial wasp, Polistes chinensis. Naturwissenschaften 96:625–629PubMedCrossRefGoogle Scholar
  63. Sawzdargo M, Nguyen T, Lee DK, Lynch KR, Cheng R, Heng HH, George SR, O’Dowd BF (1999) Identification and cloning of three novel human G protein-coupled receptor genes GPR52, ΨGPR53 and GPR55: GPR55 is extensively expressed in human brain. Brain Res Mol Brain Res 64:193–198PubMedCrossRefGoogle Scholar
  64. Schulz DJ, Robinson GE (1999) Biogenic amines and division of labor in honey bee colonies: behaviorally related changes in the antennal lobes and age-related changes in the mushroom bodies. J Comp Physiol A 184:481–488PubMedCrossRefGoogle Scholar
  65. Shumway SD, Maki M, Miyamoto S (1999) The PEST domain of IκBα is necessary and sufficient for in vitro degradation by μ-calpain. J Biol Chem 274:30874–30881PubMedCrossRefGoogle Scholar
  66. Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182Google Scholar
  67. Spencer ML, Theodosiou M, Noonan DJ (2004) NPDC-1, a novel regulator of neuronal proliferation, is degraded by the ubiquitin/proteasome system through a PEST degradation motif. J Biol Chem 279:37069–37078PubMedCrossRefGoogle Scholar
  68. Srivastava DP, Yu EJ, Kennedy K, Chatwin H, Reale V, Hamon M, Smith T, Evans PD (2005) Rapid, nongenomic responses to ecdysteroids and catecholamines mediated by a novel Drosophila G-protein-coupled receptor. J Neurosci 25:6145–6155PubMedCrossRefGoogle Scholar
  69. Stevenson PA, Hofmann HA, Schoch K, Schildberger K (2000) The fight and flight responses of crickets depleted of biogenic amines. J Neurobiol 43:107–120PubMedCrossRefGoogle Scholar
  70. Stevenson PA, Dyakonova V, Rillich J, Schildberger K (2005) Octopamine and experience-dependent modulation of aggression in crickets. J Neurosci 25:1431–1441PubMedCrossRefGoogle Scholar
  71. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  72. Taylor DJ, Robinson GE, Logan BJ, Laverty R, Mercer AR (1992) Changes in brain amine levels associated with the morphological and behavioural development of the worker honeybee. J Comp Physiol A 170:715–721PubMedCrossRefGoogle Scholar
  73. Unoki S, Matsumoto Y, Mizunami M (2005) Participation of octopaminergic reward system and dopaminergic punishment system in insect olfactory learning revealed by pharmacological study. Eur J Neurosci 22:1409–1416PubMedCrossRefGoogle Scholar
  74. Unoki S, Matsumoto Y, Mizunami M (2006) Roles of octopaminergic and dopaminergic neurons in mediating reward and punishment signals in insect visual learning. Eur J Neurosci 24:2031–2038PubMedCrossRefGoogle Scholar
  75. Vergoz V, Lim J, Oldroyd BP (2012) Biogenic amine receptor gene expression in the ovarian tissue of the honey bee Apis mellifera. Insect Mol Biol 21:21–29PubMedCrossRefGoogle Scholar
  76. Vié A, Cigna M, Toci R, Birman S (1999) Differential regulation of Drosophila tyrosine hydroxylase isoforms by dopamine binding and cAMP-dependent phosphorylation. J Biol Chem 274:16788–16795PubMedCrossRefGoogle Scholar
  77. Wada-Katsumata A, Yamaoka R, Aonuma H (2011) Social interactions influence dopamine and octopamine homeostasis in the brain of the ant Formica japonica. J Exp Biol 214:1707–1713PubMedCrossRefGoogle Scholar
  78. Waddell S (2010) Dopamine reveals neural circuit mechanisms of fly memory. Trends Neurosci 33:457–464PubMedCrossRefGoogle Scholar
  79. Walz B, Baumann O, Krach C, Baumann A, Blenau W (2006) The aminergic control of cockroach salivary glands. Arch Insect Biochem Physiol 62:141–152PubMedCrossRefGoogle Scholar
  80. Watanabe T, Sadamoto H, Aonuma H (2011) Identification and expression analysis of the genes involved in serotonin biosynthesis and transduction in the field cricket Gryllus bimaculatus. Insect Mol Biol 20:619–635PubMedCrossRefGoogle Scholar
  81. Woodring J, Hoffmann KH (1994) The effects of octopamine, dopamine and serotonin on juvenile hormone synthesis, in vitro, in the cricket, Gryllus bimaculatus. J Insect Physiol 40:797–802CrossRefGoogle Scholar
  82. Yan Z, Feng J, Fienberg AA, Greengard P (1999) D2 dopamine receptors induce mitogen-activated protein kinase and cAMP response element-binding protein phosphorylation in neurons. Proc Natl Acad Sci USA 96:11607–11612PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Takayuki Watanabe
    • 1
  • Hisayo Sadamoto
    • 2
  • Hitoshi Aonuma
    • 1
  1. 1.Research Institute for Electronic ScienceHokkaido UniversityKitaku, SapporoJapan
  2. 2.Laboratory of Functional Biology, Kagawa School of Pharmaceutical SciencesTokushima Bunri UniversitySanukiJapan

Personalised recommendations