Skip to main content

Neurobiology of plant parasitic nematodes

Abstract

The regulatory constraints imposed on use of chemical control agents in agriculture are rendering crops increasingly vulnerable to plant parasitic nematodes. Thus, it is important that new control strategies which meet requirements for low toxicity to non-target species, vertebrates and the environment are pursued. This would be greatly facilitated by an improved understanding of the physiology and pharmacology of these nematodes, but to date, these microscopic species of the Phylum Nematoda have attracted little attention in this regard. In this review, the current information available for neurotransmitters and neuromodulator in the plant parasitic nematodes is discussed in the context of the more extensive literature for other species in the phylum, most notably Caenorhabditis elegans and Ascaris suum. Areas of commonality and distinctiveness in terms of neurotransmitter profile and function between these species are highlighted with a view to improving understanding of to what extent, and with what level of confidence, this information may be extrapolated to the plant parasitic nematodes.

This is a preview of subscription content, access via your institution.

References

  • Abad P, Gouzy J, Aury J-M, Castagnone-Sereno P, Danchin EGJ, Deleury E, Perfus-Barbeoch L et al (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotech 26:909–915

    Article  CAS  Google Scholar 

  • Alford DV (2011) Plant pests. HarperCollins, London

    Google Scholar 

  • Alkharouf NW, Klink VP, Matthews BF (2007) Identification of Heterodera glycines (soybean cyst nematode [SCN]) cDNA sequences with high identity to those of C. elegans having lethal mutant or RNAi phenotypes. Expt Parasitol 115:247–258

    Article  CAS  Google Scholar 

  • Atkinson HJ, Isaac RE, Harris PD, Sharpe CM (1988) FMRFamide-like immunoreactivity within the nervous system of the nematodes Panagrellus redivivus, Caenorhabditis elegans and Heterodera glycines. J Zool 216:663–671

    Article  Google Scholar 

  • Avery L (1993) Motor neuron M3 controls pharyngeal muscle relaxation timing in Caenorhabditis elegans. J Exp Biol 175:283–297

    PubMed  CAS  Google Scholar 

  • Bakhetia M, Charlton WL, Urwin PE, McPherson MJ, Atkinson HJ (2005) RNA interference and plant parasitic nematodes. Trends Plant Sci 10:362–367

    PubMed  Article  CAS  Google Scholar 

  • Benson JA (1988) Bicuculline blocks the response to acetylcholine and nicotine but not to muscarine or GABA in isolated insect neuronal somata. Brain Res 458:65–71

    PubMed  Article  CAS  Google Scholar 

  • Bessou C, Giugia JB, Franks CJ, Holden-Dye L, Ségalat L (1998) Mutations in the Caenorhabditis elegans dystrophin-like gene dys-1 lead to hyperactivity and suggest a link with cholinergic transmission. Neurogenetics 2:61–72

    PubMed  Article  CAS  Google Scholar 

  • Bird AF (1974) Plant response to root-knot nematode. Phytopath 12:69–85

    Article  CAS  Google Scholar 

  • Blaxter ML (2003) Nematoda: genes, genomes and the evolution of parasitism. Adv Parasitol 54:101–195

    PubMed  Article  Google Scholar 

  • Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75

    PubMed  Article  CAS  Google Scholar 

  • Bridge J, Starr JL (2007) Plant nematodes of agricultural importance. Manson, London

    Google Scholar 

  • Brownlee DJ, Holden-Dye L, Fairweather I, Walker RJ (1995) The action of serotonin and the nematode neuropeptide KSAYMRFamide on the pharyngeal muscle of the parasitic nematode, Ascaris suum. Parasitology 111:379–384

    PubMed  Article  CAS  Google Scholar 

  • Chang S, Opperman CH (1991) Characterization of Acetylcholinesterase molecular forms of the root-knot nematode, Meloidogyne. Mol Biochem Parasitol 49:205–214

    PubMed  Article  CAS  Google Scholar 

  • Chiang JT, Steciuk M, Shtonda B, Avery L (2006) Evolution of pharyngeal behaviors and neuronal functions in free-living soil nematodes. J Exp Biol 209:1859–1873

    PubMed  Article  Google Scholar 

  • Costa JC, Lilley CJ, Atkinson HJ, Urwin PE (2009) Functional characterization of a cyst nematode acetylcholinesterase gene using Caenorhabditis elegans as a heterologous system. Inter J Parasitol 39:849–858

    Article  CAS  Google Scholar 

  • Cowden C, Stretton AO (1995) Eight novel FMRFamide-like neuropeptides isolated from the nematode Ascaris suum. Peptides 16:491–500

    PubMed  Article  CAS  Google Scholar 

  • Cully DF, Vassilatis DK, Liu KK, Paress PS, Van der Ploeg LH, Schaeffer JM, Arena JP (1994) Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371:707–711

    PubMed  Article  CAS  Google Scholar 

  • Dalzell JJ, Warnock ND, Stevenson MA, Mousley A, Fleming CC, Maule AG (2010) Short interfering RNA-mediated knockdown of drosha and pasha in undifferentiated Meloidogyne incognita eggs leads to irregular growth and embryonic lethality. Int J Parasitol 40:1303–1310

    PubMed  Article  CAS  Google Scholar 

  • Faske TR, Starr JL (2006) Sensitivity of Meloidogyne incognita and Rotylenchulus reniformis to Abamectin. J Nematol 38:240–244

    PubMed  CAS  Google Scholar 

  • Fleming CC, McKinney S, McMaster S, Johnston MJG, Donnelly P, Kimber MJ, Maule AG (2007) Getting to the root of neuronal signalling in plant parasitic nematodes using RNA interference. Nematology 9:301–315

    Article  CAS  Google Scholar 

  • Franks CJ, Holden-Dye L, Bull K, Luedtke S, Walker RJ (2006) Anatomy, physiology and pharmacology of Caenorhabditis elegans pharynx: a model to define gene function in a simple neural system. Invert Neurosci 6:105–122

    PubMed  Article  Google Scholar 

  • Goverse A, Davis EL, Hussey RS (1994) Monoclonal antibodies to the oesophageal glands and stylet secretions of Heterodera glycines. J Nematol 26:251–259

    PubMed  CAS  Google Scholar 

  • Goverse A, de Engler JA, Verhees J, van der Krol S, Helder JH, Gheysen G (2000) Cell cycle activation by plant parasitic nematodes. Plant Mol Biol 43:747–761

    PubMed  Article  CAS  Google Scholar 

  • Gowen SR (1997) Chemical control of nematodes: efficiency and side-effects. In: Plant nematode problems and their control in the North East region (FAO Plant Production and Protection Paper 144). Corporate Documentary Repository, USA

  • Hallem EA, Dillman AR, Hong AV, Zhang Y, Yano JM, Demarco SF, Sternberg PW (2011) A sensory code for host seeking in parasitic nematodes. Curr Biol 21:377–383

    PubMed  Article  CAS  Google Scholar 

  • Holden-Dye L, Krogsgaard-Larsen P, Nielsen L, Walker RJ (1989) GABA receptors on the somatic muscle cells of the parasitic nematode, Ascaris suum: stereoselectivity indicates similarity to a GABAA-type agonist recognition site. Br J Pharmacol 98:841–850

    PubMed  CAS  Google Scholar 

  • Huang Q-X, Cheng X-Y, Mao Z-C, Wang Y-S, Zhao L-L, Yan X, Ferris VR, Xu R-M, Xie B-Y (2010) MicroRNA discovery and analysis of pinewood nematode Bursaphelenchus xylophilus. PLoS One 5:e13271

    PubMed  Article  Google Scholar 

  • Johnston MJG, McVeigh P, McMaster S, Fleming CC, Maule AG (2010) FMRFamide-like peptides in root knot nematodes and their potential role in nematode physiology. J Helminth 84:253–265

    PubMed  Article  CAS  Google Scholar 

  • Jones AK, Davis P, Hodgkin J, Sattelle DB (2007) The nicotinic acetylcholine receptor gene family of the nematode Caenorhabditis elegans: an update on nomenclature. Invert Neurosci 7:129–131

    PubMed  Article  CAS  Google Scholar 

  • Jonz MG, Rigga E, Mercier AJ, Potter JW (2001) Effect of 5-HT (serotonin) on reproductive behaviour in Heterodera schachtii (Nematoda). Can J Zool 79:1727–1732

    CAS  Google Scholar 

  • Kaminsky R, Ducray P, Jung M, Clover R, Rufener L, Bouvier J, Weber SS, Wenger A, Wieland-Berghausen S, Goebel T, Gauvry N, Pautrat F, Skripsky T, Froelich O, Komoin-Oka C, Westlund B, Sluder A, Mäser P (2008) A new class of anthelmintics effective against drug-resistant nematodes. Nature 452(7184):176–180

    PubMed  Article  CAS  Google Scholar 

  • Kang JS, Lee H, Moon IS, Lee Y, Koh YH, Je YH, Lim KJ, Lee SH (2009) Construction and characterization of subtractive stage-specific expressed sequence tag (EST) libraries of the pinewood nematode, Bursaphelenchus xylophilus. Genomics 94:70–77

    PubMed  Article  CAS  Google Scholar 

  • Keating CD, Kriek N, Daniels M, Ashcroft NR, Hopper NA, Siney EJ, Holden-Dye L, Burke JF (2003) Whole-genome analysis of 60 G protein-coupled receptors in Caenorhabditis elegans by gene knockout with RNAi. Curr Biol 13:1715–1720

    PubMed  Article  CAS  Google Scholar 

  • Kimber MJ, Fleming CC, Bjourson AJ, Halton DW, Maule AG (2001) FMRFamide-related peptides in potato cyst nematodes. Mol Biochem Parasitol 116:199–208

    PubMed  Article  CAS  Google Scholar 

  • Kimber MJ, Fleming CC, Prior A, Jones JT, Halton DW, Maule AG (2002) Localization of Globodera pallida FMRFamide related peptide encoding genes using in situ hybridisation. Inter J Parasitol 32:1095–1105

    Article  CAS  Google Scholar 

  • Kimber MJ, McKinney S, McMaster S, Day TA, Fleming CC, Maule AG (2007) flp gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference. FASEB J 21:1233–1243

    PubMed  Article  CAS  Google Scholar 

  • Laffaire J, Jaubert S, Abad P, Rosso M (2003) Molecular cloning and life stage expression pattern of a new acetylcholinesterase gene from the plant nematode Meloidogyne incognita. Nematol 5:213–217

    Article  CAS  Google Scholar 

  • Li C, Kim K (2008) Neuropeptides. In: WormBook (ed) The C. elegans research community, WormBook. doi:10.1895/wormbook.1.142.1, http://www.wormbook.org

  • Li C, Kim K (2010) Neuropeptide gene families in Caenorhabditis elegans. In: Geary TG, Maule AG (eds) Neuropeptide systems as targets for parasite and pest control. Landes Bioscience, TX, pp 98–137

    Chapter  Google Scholar 

  • Macosko EZ, Pokala N, Feinberg EH, Chalasani SH, Butcher RA, Clardy J, Bargmann CI (2009) A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458:1171–1175

    PubMed  Article  CAS  Google Scholar 

  • Marks NJ, Maule AG (2010) Neuropeptides in helminths: occurrence and distribution. Adv Exp Med Biol 692:49–77

    PubMed  Article  CAS  Google Scholar 

  • Martin RJ, Robertson AP (2007) Mode of action of levamisole and pyrantel, anthelmintic resistance, E153 and Q57. Parasitology 134:1093–1104

    PubMed  Article  CAS  Google Scholar 

  • Martin RJ, Pennington AJ, Duittoz AH, Robertson S, Kusel JR (1991) The physiology and pharmacology of neuromuscular transmission in the nematode parasite, Ascaris suum. Parasitol 102:S41–S58

    Article  Google Scholar 

  • Masler EP (2007) Responses of Heterodera glycines and Meloidogyne incognita to exogenously applied neuromodulators. J Helminth 81:421–427

    PubMed  Article  CAS  Google Scholar 

  • Masler EP (2008) Responses of Heterodera glycines and Meloidogyne incognita to exogenously applied biogenic amines. Nematology 10:911–917

    Article  Google Scholar 

  • Masler EP (2010) In vitro comparison of protease activity in preparations from free-living (Paragrellus redivivus) and plant-parasitic (Meloidogyne incognita) nematodes using FMRFa and FMRFa-like peptides as substrates. J Helminth 84:425–433

    Google Scholar 

  • Masler EP, Kovaleva ES, Sardanelli S (1999a) FMRFamide-like immunoreactivity in Heterodera glycines (Nematoda: Tylenchida). J Nematol 31:224–231

    PubMed  CAS  Google Scholar 

  • Masler EP, Kovaleva ES, Sardanelli S (1999b) Comparison of FaRP immunoreactivity in free-living nematodes and in the plant-parasitic nematode Heterodera glycines. Ann NY Acad Sci 897:253–263

    PubMed  Article  CAS  Google Scholar 

  • Masler EP, Zasada IA, Sardanelli S, Rogers ST, Halbrendt JM (2010) Effects of benzyl isothiocyanate on the reproduction of Meloidogyne incognita on Glycine max and Capsicum annum. Nematol 12:693–699

    Article  CAS  Google Scholar 

  • Mbeunkui F, Scholl EH, Opperman CH, Goshe MB, Bird MKD (2010) Proteomic and bioinformatic analysis of the root-knot nematode Meloidogyne hapla: the basis for plant parasitism. J Proteome Res 9:5370–5381

    PubMed  Article  CAS  Google Scholar 

  • McClure MA, von Mende N (1987) Induced salivation in plant-parasitic nematodes. Phytopath 77:1463–1469

    Article  Google Scholar 

  • McVeigh P, Leech S, Mair GR, Marks NJ, Geary TG, Maule AG (2005) Analysis of FMRFamide-like peptide (FLP) diversity in phylum Nematoda. Int J Parasitol 35:1043–1060

    PubMed  Article  CAS  Google Scholar 

  • Opperman CH, Bird DM, Williamson VM, Rohksar DS, Burke M, Cohn J, Cromer J et al (2008) Sequence and genetic map of Meloidogyne hapla, a compact nematode genome for plant parasitism. Proc Natl Acad Sci USA 105:1402–1407

    Article  Google Scholar 

  • Papaioannou S, Marsden D, Franks CJ, Walker RJ, Holden-Dye L (2005) Role of a FMRFamide-like family of neuropeptides in the pharyngeal nervous system of Caenorhabditis elegans. J Neurobiol 65:304–319

    PubMed  Article  CAS  Google Scholar 

  • Papaioannou S, Holden-Dye L, Walker RJ (2008a) Evidence for a role for cyclic AMP in modulating the action of 5-HT and an excitatory neuropeptide, FLP17A, in the pharyngeal muscle of Caenorhabditis elegans. Invert Neurosci 8:91–100

    PubMed  Article  CAS  Google Scholar 

  • Papaioannou S, Holden-Dye L, Walker RJ (2008b) The actions of Caenorhabditis elegans neuropeptide-like peptides (NLPs) on body wall muscle of Ascaris suum and pharyngeal muscle of C. elegans. Acta Biol Hung 59(Suppl):189–197

    Google Scholar 

  • Perry RN, Moens M, Starr JL (2009) Root-knot nematodes. CAB International, Oxford

    Book  Google Scholar 

  • Piotte C, Arthaud L, Abad P, Rosso MN (1999) Molecular cloning of an acetylcholinesterase gene from the plant parasitic nematodes, Meloidogyne incognita and Meloidogyne javanica. Mol Biochem Parasitol 99:247–256

    PubMed  Article  CAS  Google Scholar 

  • Robertson L, Robertson WM, Jones JT (1999) Direct analysis of the secretions of the potato cyst nematode Globodera rostochiensis. Parasitol 119:167–176

    Article  CAS  Google Scholar 

  • Robertson AP, Clark CL, Burns TA, Thompson DP, Geary TG, Trailovic SM, Martin RJ (2002) Paraherquamide and 2-deoxy-paraherquamide distinguish cholinergic receptor subtypes in Ascaris muscle. J Pharmacol Exp Ther 302:853–860

    PubMed  Article  CAS  Google Scholar 

  • Rogers CM, Franks CJ, Walker RJ, Burke JF, Holden-Dye L (2001) Regulation of the pharynx of Caenorhabditis elegans by 5-HT, octopamine, and FMRFamide-like neuropeptides. J Neurobiol 49:235–244

    PubMed  Article  CAS  Google Scholar 

  • Rolfe RN, Perry RN (2001) Electropharyngeograms and stylet activity of second stage juveniles of Globodera rostochiensis. Nematology 3:31–34

    Article  Google Scholar 

  • Rosso MN, Dubrana MP, Cimbolini N, Jaubert S, Abad P (2005) Application of RNA interference to root-knot nematode genes encoding esophageal gland proteins. Mol Plant Microb Interact 18:615–620

    Article  CAS  Google Scholar 

  • Rosso MN, Jones JT, Abad P (2009) RNAi and functional genomics in plant parasitic nematodes. Annu Rev Phytopathol 47:207–232

    PubMed  Article  CAS  Google Scholar 

  • Rufener L, Baur R, Kaminsky R, Mäser P, Sigel E (2010) Monepantel allosterically activates DEG-3/DES-2 channels of the gastrointestinal nematode Haemonchus contortus. Mol Pharmacol 78:895–902

    PubMed  Article  CAS  Google Scholar 

  • Sasser JN (1980) Root-knot nematodes: a global menace to crop production. Plant Dis 64:36–41

    Article  Google Scholar 

  • Schaller G (2004) The molecular cloning of an acetylcholinesterase class 2 gene from the plant nematode Globodera pallida. Univ Leeds, UK

    Google Scholar 

  • Sharpe MJ, Atkinson HJ (1980) Improved visualization of dopaminergic-neurons in nematodes using the glyoxylic-acid fluorescence method. J Zool 190:273–284

    Article  Google Scholar 

  • Stewart GR, Perry RN, Wright DJ (1994) Immunocytochemical studies on the occurrence of gamma-aminobutyric acid in the nervous system of the nematodes Panagrellus redivivus, Meloidogyne incognita and Globodera rostochiensis. Fund Appl Nematol 17:433–439

    Google Scholar 

  • Stewart GR, Perry RN, Wright DJ (2001) Occurrence of dopamine in Panagrellus redivivus and Meloidogyne incognita. Nematol 3:843–848

    Article  CAS  Google Scholar 

  • Stretton AO, Cowden C, Sithigorngul P, Davis RE (1991) Neuropeptides in the nematode Ascaris suum. Parasitology 102(Suppl):S107–S116

    Google Scholar 

  • Trim JE, Holden-Dye L, Willson J, Lockyer M, Walker RJ (2001) Characterization of 5-HT receptors in the parasitic nematode, Ascaris suum. Parasitology 122:207–217

    PubMed  Article  CAS  Google Scholar 

  • Tsalik EL, Niacaris T, Wenick AS, Pau K, Avery L, Hobert O (2003) LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. Dev Biol 263:81–102

    PubMed  Article  CAS  Google Scholar 

  • Urwin PE, Lilley CJ, Atkinson HJ (2002) Ingestion of double-stranded RNA by pre-parasitic juvenile cyst nematodes leads to RNA interference. Mol Plant-Microbe Interact 15:747–752

    PubMed  Article  CAS  Google Scholar 

  • van de Cappelle E, Plovie E, Kyndt T, Grunewald W, Cannoot B, Gheysen G (2008) AtCDKA;1 silencing in Arabidopsis thaliana reduces reproduction of sedentary plant-parasitic nematodes. Plant Biotech J 6:749–757

    Article  Google Scholar 

  • Welz C, Krüger N, Schniederjans M, Miltsch SM, Krücken J, Guest M, Holden-Dye L, Harder A, von Samson-Himmelstjerna G (2011) SLO-1-channels of parasitic nematodes reconstitute locomotor behaviour and emodepside sensitivity in Caenorhabditis elegans slo-1 loss of function mutants. PLoS Pathog 7:e1001330

    PubMed  Article  CAS  Google Scholar 

  • Williamson VM, Hussey RS (1996) Nematode pathogenesis and resistance in plants. Plant Cell 8:1735–1745

    PubMed  Article  CAS  Google Scholar 

  • Wright DJ, Birtle AJ, Roberts IT (1984) Triphasic locomotor response of a plant-parasitic nematode to avermectin: inhibition by the GABA antagonists bicuculline and picrotoxin. Parasitology 88:375–382

    PubMed  CAS  Google Scholar 

  • Yan Y, Davis EL (2002) Characterization of guanylyl cyclise genes in the soybean cyst nematode Heterodera glycines. Inter J Parasitol 32:65–72

    Article  CAS  Google Scholar 

  • Yu S, Avery L, Baude E, Garbers DL (1997) Guanylyl cyclise expression in specific sensory neurons: a new family of chemosensory receptors. Proc Natl Acad Sci USA 94:3384–3387

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindy Holden-Dye.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Holden-Dye, L., Walker, R.J. Neurobiology of plant parasitic nematodes. Invert Neurosci 11, 9–19 (2011). https://doi.org/10.1007/s10158-011-0117-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-011-0117-2

Keywords

  • Neurotransmitter
  • Receptor
  • Nematode
  • Behaviour
  • Host recognition
  • Plant parasitic
  • Chemical control