Skip to main content

Advertisement

Log in

Activation of necroptosis pathway in podocyte contributes to the pathogenesis of focal segmental glomerular sclerosis

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Focal segmental glomerulosclerosis (FSGS) is characterized by podocyte damage and severe proteinuria. The exact mechanism of podocyte damage and loss remains unclear. Necroptosis, a lytic form of programmed cell death mediated by RIP3 and MLKL, has emerged as an important cell death pattern in multiple tissues and cell types. Necroptosis in FSGS has not been investigated.

Methods

Public GEO data regarding podocyte treated with vehicle or adriamycin (ADR) was identified and analyzed. Cultured human podocytes were used to explore the activation of necroptosis upon ADR stimulation. The expression of necroptosis pathway molecules, p-RIP3 and p-MLKL, was examined in the glomeruli and defoliated urinary podocytes of patients with FSGS. The effect of necroptosis inhibition was assessed in ADR-induced glomerulopathy mice using GSK872.

Results

Publicly available RNA-sequencing data analysis showed that both necroptosis and NLRP3 inflammasome pathway were up-regulated in ADR-injured podocyte. Immunofluorescent staining showed increased expression of p-RIP3 and p-MLKL, the active forms of RIP3 and MLKL, in podocytes of FSGS patients and ADR-induced glomerulopathy mice but not in the normal control. GSK872, an RIP3 kinase inhibitor, significantly inhibited the expression of p-RIP3, p-MLKL and activation of NLRP3 in cultured podocytes treated with ADR. GSK872 treatment of mice with ADR-induced nephropathy resulted in the reduced expression of p-RIP3, p-MLKL, NLRP3 and caspase-1 p20. GSK872 also significantly inhibited the expression of p-MLKL in the podocytes of ADR-induced nephropathy, resulting in the attenuation of proteinuria and renal histological lesions.

Conclusion

Necroptosis pathway might be a valuable target for the treatment of FSGS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kopp JB, Anders H-J, Susztak K, Podestà MA, Remuzzi G, Hildebrandt F, et al. Podocytopathies. Nat Rev Dis Prim. 2020;6(1):68. https://doi.org/10.1038/s41572-020-0196-7.

    Article  PubMed  Google Scholar 

  2. Fogo AB. Causes and pathogenesis of focal segmental glomerulosclerosis. Nat Rev Nephrol. 2015;11(2):76–87. https://doi.org/10.1038/nrneph.2014.216.

    Article  CAS  PubMed  Google Scholar 

  3. Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol. 2020;21(11):678–95. https://doi.org/10.1038/s41580-020-0270-8.

    Article  CAS  PubMed  Google Scholar 

  4. Lawlor KE, Khan N, Mildenhall A, Gerlic M, Croker BA, D’Cruz AA, et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat Commun. 2015;6:6282. https://doi.org/10.1038/ncomms7282.

    Article  CAS  PubMed  Google Scholar 

  5. Conos SA, Chen KW, De Nardo D, Hara H, Whitehead L, Nunez G, et al. Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc Natl Acad Sci U S A. 2017;114(6):E961–9. https://doi.org/10.1073/pnas.1613305114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen J, Wang S, Fu R, Zhou M, Zhang T, Pan W, et al. RIP3 dependent NLRP3 inflammasome activation is implicated in acute lung injury in mice. J Transl Med. 2018;16(1):233. https://doi.org/10.1186/s12967-018-1606-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weinlich R, Oberst A, Beere HM, Green DR. Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Biol. 2017;18(2):127–36. https://doi.org/10.1038/nrm.2016.149.

    Article  CAS  PubMed  Google Scholar 

  8. Roychowdhury S, McMullen MR, Pisano SG, Liu X, Nagy LE. Absence of receptor interacting protein kinase 3 prevents ethanol-induced liver injury. Hepatology (Baltimore, MD). 2013;57(5):1773–83. https://doi.org/10.1002/hep.26200.

    Article  CAS  Google Scholar 

  9. Solanki AK, Srivastava P, Rahman B, Lipschutz JH, Nihalani D, Arif E. The use of high-throughput transcriptomics to identify pathways with therapeutic significance in podocytes. Int J Mol Sci. 2019;21(1):274. https://doi.org/10.3390/ijms21010274.

    Article  CAS  PubMed Central  Google Scholar 

  10. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. https://doi.org/10.1186/1471-2105-14-7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics (Oxford, England). 2011;27(12):1739–40. https://doi.org/10.1093/bioinformatics/btr260.

    Article  CAS  PubMed Central  Google Scholar 

  12. Fu R, Guo C, Wang S, Huang Y, Jin O, Hu H, et al. Podocyte activation of NLRP3 inflammasomes contributes to the development of proteinuria in lupus nephritis. Arthritis Rheumatol. 2017;69(8):1636–46. https://doi.org/10.1002/art.40155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saleem MA, O’Hare MJ, Reiser J, Coward RJ, Inward CD, Farren T, et al. A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J Am Soc Nephrol. 2002;13(3):630–8. https://doi.org/10.1681/asn.V133630.

    Article  CAS  PubMed  Google Scholar 

  14. Li R, Yang N, Zhang L, Huang Y, Zhang R, Wang F, et al. Inhibition of JAK/STAT signaling ameliorates mice experimental nephrotic syndrome. Am J Nephrol. 2007;27(6):580–9. https://doi.org/10.1159/000108102.

    Article  CAS  PubMed  Google Scholar 

  15. Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015;517:311. https://doi.org/10.1038/nature14191.

    Article  CAS  PubMed  Google Scholar 

  16. Maeda K, Otomo K, Yoshida N, Abu-Asab MS, Ichinose K, Nishino T, et al. CaMK4 compromises podocyte function in autoimmune and nonautoimmune kidney disease. J Clin Invest. 2018;128(8):3445–59. https://doi.org/10.1172/jci99507.

    Article  PubMed  PubMed Central  Google Scholar 

  17. De Vriese AS, Wetzels JF, Glassock RJ, Sethi S, Fervenza FC. Therapeutic trials in adult FSGS: lessons learned and the road forward. Nat Rev Nephrol. 2021. https://doi.org/10.1038/s41581-021-00427-1.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mulay SR, Desai J, Kumar SV, Eberhard JN, Thomasova D, Romoli S, et al. Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat Commun. 2016;7:10274. https://doi.org/10.1038/ncomms10274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Linkermann A, Brasen JH, Himmerkus N, Liu S, Huber TB, Kunzendorf U, et al. Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int. 2012;81(8):751–61. https://doi.org/10.1038/ki.2011.450.

    Article  CAS  PubMed  Google Scholar 

  20. Xu Y, Gao H, Hu Y, Fang Y, Qi C, Huang J, et al. High glucose-induced apoptosis and necroptosis in podocytes is regulated by UCHL1 via RIPK1/RIPK3 pathway. Exp Cell Res. 2019;382(2):111463. https://doi.org/10.1016/j.yexcr.2019.06.008.

    Article  CAS  PubMed  Google Scholar 

  21. Guo C, Fu R, Zhou M, Wang S, Huang Y, Hu H, et al. Pathogenesis of lupus nephritis: RIP3 dependent necroptosis and NLRP3 inflammasome activation. J Autoimmun. 2019;103:102286. https://doi.org/10.1016/j.jaut.2019.05.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148(1–2):213–27. https://doi.org/10.1016/j.cell.2011.11.031.

    Article  CAS  PubMed  Google Scholar 

  23. Swanson KV, Deng M, Ting JPY. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477–89. https://doi.org/10.1038/s41577-019-0165-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cuda CM, Misharin AV, Khare S, Saber R, Tsai F, Archer AM, et al. Conditional deletion of caspase-8 in macrophages alters macrophage activation in a RIPK-dependent manner. Arthritis Res Ther. 2015;17:291. https://doi.org/10.1186/s13075-015-0794-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shahzad K, Bock F, Dong W, Wang H, Kopf S, Kohli S, et al. Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int. 2015;87(1):74–84. https://doi.org/10.1038/ki.2014.271.

    Article  CAS  PubMed  Google Scholar 

  26. Xiong J, Wang Y, Shao N, Gao P, Tang H, Su H, et al. The expression and significance of NLRP3 inflammasome in patients with primary glomerular diseases. Kidney Blood Press Res. 2015;40(4):344–54. https://doi.org/10.1159/000368511.

    Article  CAS  PubMed  Google Scholar 

  27. McCarthy ET, Sharma M, Savin VJ. Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. Clin J Am Soc Nephrol CJASN. 2010;5(11):2115–21. https://doi.org/10.2215/cjn.03800609.

    Article  PubMed  Google Scholar 

  28. Gohh RY, Yango AF, Morrissey PE, Monaco AP, Gautam A, Sharma M, et al. Preemptive plasmapheresis and recurrence of FSGS in high-risk renal transplant recipients. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2005;5(12):2907–12. https://doi.org/10.1111/j.1600-6143.2005.01112.x.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Dongguan Science and Technology of Social Development Program (201950715001183).

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in drafting and revising the article. NY, HH, ML: conceived and designed the study, HH and ML: collected clinical samples, HH, ML, CG, and BC: conducted experiments, NY, ML, CG and BC: analyzed and interpreted data, ML and NY: wrote the manuscript.

Corresponding author

Correspondence to Niansheng Yang.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Ethical approval

This study was approved by the Institutional Research Ethics Committee of Affiliated Dongguan People’s Hospital, Southern Medical University, China (IRB approval number KYKT2021-034). This study was performed in compliance with the Helsinki Declaration. Volunteer patients provided written consent. All procedures involving experimental animals were approved by the Ethical Committee of Animal Research of the Sun Yat-sen University (IRB approval number SYSU-IACUC-2020-000151).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 346 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Li, M., Chen, B. et al. Activation of necroptosis pathway in podocyte contributes to the pathogenesis of focal segmental glomerular sclerosis. Clin Exp Nephrol 26, 1055–1066 (2022). https://doi.org/10.1007/s10157-022-02258-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-022-02258-1

Keywords

Navigation