Skip to main content
Log in

Zinc deficiency: its prevalence and relationship to renal function in Japan

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Although zinc deficiency is common among dialyzed patients, its prevalence among non-dialyzed subjects and its relationship to renal function remain unclear.

Methods

We selected 816 non-dialyzed subjects (495 males; mean age, 56 ± 18 years) who underwent measurement of serum zinc at Jikei University Hospital between April 2018 and March 2019 using the Standardized Structured Medical Information eXchange2 (SS-MIX2) system, a global standard in Japan that enables collection of structured medical records with automatic data transfer to a registry database system. A serum zinc level of 60–80 μg/dL was defined as marginal zinc deficiency and a level of < 60 μg/dL as absolute zinc deficiency. We investigated factors associated with serum zinc using multiple regression analysis.

Results

Marginal and absolute zinc deficiency were present in 52.3% and 30.6% of subjects, respectively. Serum zinc levels tended to decrease with increasing stage of chronic kidney disease (CKD) (P = 0.051). Estimated glomerular filtration rate (eGFR) was not independently associated with serum zinc levels. Instead, serum albumin (t = 4.69, P < 0.01), hemoglobin (t = 2.54, P = 0.01) and mean corpuscular volume (MCV) (t = − 2.20, P = 0.03) were independently associated with serum zinc. In sensitivity analyses, serum zinc was not associated with either serum copper- or iron-related parameters.

Conclusion

This large-scale study clarified the prevalence of zinc deficiency among non-dialyzed Japanese subjects. In addition, eGFR was not independently associated with serum zinc, probably due to confounding factors, such as nutritional status and degree of anemia. Further investigations are needed to clarify the epidemiology of zinc deficiency and its associations with CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Prasad AS. Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp Gerontol. 2008;43(5):370–7. https://doi.org/10.1016/j.exger.2007.10.013.

    Article  CAS  PubMed  Google Scholar 

  2. Prasad AS. Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr. 2013;4(2):176–90. https://doi.org/10.3945/an.112.003210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Prasad AS. Zinc: an overview. Nutrition. 1995;11(1 Suppl):93–9.

    CAS  PubMed  Google Scholar 

  4. Zhao XQ, Bai FW. Zinc and yeast stress tolerance: micronutrient plays a big role. J Biotechnol. 2012;158(4):176–83. https://doi.org/10.1016/j.jbiotec.2011.06.038.

    Article  CAS  PubMed  Google Scholar 

  5. Kodama H, Tanaka M, Naito Y, Katayama K, Moriyama M. Japan’s practical guidelines for zinc deficiency with a particular focus on taste disorders, inflammatory bowel disease, and liver cirrhosis. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21082941.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang X, Wu W, Zheng W, Fang X, Chen L, Rink L, et al. Zinc supplementation improves glycemic control for diabetes prevention and management: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr. 2019;110(1):76–90. https://doi.org/10.1093/ajcn/nqz041.

    Article  PubMed  Google Scholar 

  7. Ranasinghe P, Wathurapatha WS, Ishara MH, Jayawardana R, Galappatthy P, Katulanda P, et al. Effects of zinc supplementation on serum lipids: a systematic review and meta-analysis. Nutr Metab. 2015;12:26. https://doi.org/10.1186/s12986-015-0023-4.

    Article  CAS  Google Scholar 

  8. Bao B, Prasad AS, Beck FW, Fitzgerald JT, Snell D, Bao GW, et al. Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent. Am J Clin Nutr. 2010;91(6):1634–41. https://doi.org/10.3945/ajcn.2009.28836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Damianaki K, Lourenco JM, Braconnier P, Ghobril JP, Devuyst O, Burnier M, et al. Renal handling of zinc in chronic kidney disease patients and the role of circulating zinc levels in renal function decline. Nephrol Dial Transplant. 2019. https://doi.org/10.1093/ndt/gfz065.

    Article  Google Scholar 

  10. Batista MN, Cuppari L, de Fatima Campos Pedrosa L, Almeida M, de Almeida JB, de Medeiros AC, et al. Effect of end-stage renal disease and diabetes on zinc and copper status. Biol Trace Elem Res. 2006;112(1):1–12. https://doi.org/10.1385/bter:112:1:1.

    Article  CAS  PubMed  Google Scholar 

  11. Dashti-Khavidaki S, Khalili H, Vahedi SM, Lessan-Pezeshki M. Serum zinc concentrations in patients on maintenance hemodialysis and its relationship with anemia, parathyroid hormone concentrations and pruritus severity. Saudi J Kidney Dis Transpl. 2010;21(4):641–5.

    PubMed  Google Scholar 

  12. Lee SH, Huang JW, Hung KY, Leu LJ, Kan YT, Yang CS, et al. Trace metals’ abnormalities in hemodialysis patients: relationship with medications. Artif Organs. 2000;24(11):841–4. https://doi.org/10.1046/j.1525-1594.2000.06352.x.

    Article  CAS  PubMed  Google Scholar 

  13. Shimizu S, Tei R, Okamura M, Takao N, Nakamura Y, Oguma H, et al. Prevalence of zinc deficiency in japanese patients on peritoneal dialysis: comparative study in patients on hemodialysis. Nutrients. 2020. https://doi.org/10.3390/nu12030764.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Muirhead N, Kertesz A, Flanagan PR, Hodsman AB, Hollomby DJ, Valberg LS. Zinc metabolism in patients on maintenance hemodialysis. Am J Nephrol. 1986;6(6):422–6. https://doi.org/10.1159/000167247.

    Article  CAS  PubMed  Google Scholar 

  15. Mafra D, Cuppari L, Cozzolino SM. Iron and zinc status of patients with chronic renal failure who are not on dialysis. J Ren Nutr. 2002;12(1):38–41. https://doi.org/10.1053/jren.2002.29597.

    Article  PubMed  Google Scholar 

  16. Aziz MA, Majeed GH, Diab KS, Al-Tamimi RJ. The association of oxidant-antioxidant status in patients with chronic renal failure. Ren Fail. 2016;38(1):20–6. https://doi.org/10.3109/0886022X.2015.1103654.

    Article  CAS  PubMed  Google Scholar 

  17. Pan CF, Lin CJ, Chen SH, Huang CF, Lee CC. Association between trace element concentrations and anemia in patients with chronic kidney disease: a cross-sectional population-based study. J Investig Med. 2019;67(6):995–1001. https://doi.org/10.1136/jim-2018-000833.

    Article  PubMed  Google Scholar 

  18. Chen SM, Liao JF, Kuo CD, Ho LT. Intestinal absorption and biliary secretion of zinc in rats with chronic renal failure. Nephron Physiol. 2004;96(4):p113-20. https://doi.org/10.1159/000077382.

    Article  CAS  PubMed  Google Scholar 

  19. Takenouchi K, Yuasa K, Shioya M, Kimura M, Watanabe H, Oki Y, et al. Development of a new seamless data stream from EMR to EDC system using SS-MIX2 standards applied for observational research in diabetes mellitus. Learn Health Syst. 2019;3(1):e10072. https://doi.org/10.1002/lrh2.10072.

    Article  PubMed  Google Scholar 

  20. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53(6):982–92.

    Article  CAS  Google Scholar 

  21. Hennigar SR, Lieberman HR, Fulgoni VL 3rd, McClung JP. Serum zinc concentrations in the us population are related to sex, age, and time of blood draw but not dietary or supplemental zinc. J Nutr. 2018;148(8):1341–51. https://doi.org/10.1093/jn/nxy105.

    Article  PubMed  Google Scholar 

  22. Osawa M, Yamaguchi T, Nakamura Y, Kaneko S, Onodera M, Sawada K, et al. Erythroid expansion mediated by the Gfi-1B zinc finger protein: role in normal hematopoiesis. Blood. 2002;100(8):2769–77. https://doi.org/10.1182/blood-2002-01-0182.

    Article  CAS  PubMed  Google Scholar 

  23. Bresnick EH, Martowicz ML, Pal S, Johnson KD. Developmental control via GATA factor interplay at chromatin domains. J Cell Physiol. 2005;205(1):1–9. https://doi.org/10.1002/jcp.20393.

    Article  CAS  PubMed  Google Scholar 

  24. Deicher R, Horl WH. Hormonal adjuvants for the treatment of renal anaemia. Eur J Clin Investig. 2005;35(Suppl 3):75–84. https://doi.org/10.1111/j.1365-2362.2005.01533.x.

    Article  CAS  Google Scholar 

  25. Cossack ZT. Decline in somatomedin-C (insulin-like growth factor-1) with experimentally induced zinc deficiency in human subjects. Clin Nutr. 1991;10(5):284–91. https://doi.org/10.1016/0261-5614(91)90008-z.

    Article  CAS  PubMed  Google Scholar 

  26. Feng HL, Chen YH, Jeng SS. Effect of zinc supplementation on renal anemia in 5/6-nephrectomized rats and a comparison with treatment with recombinant human erythropoietin. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20204985.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fukushima T, Horike H, Fujiki S, Kitada S, Sasaki T, Kashihara N. Zinc deficiency anemia and effects of zinc therapy in maintenance hemodialysis patients. Ther Apher Dial. 2009;13(3):213–9. https://doi.org/10.1111/j.1744-9987.2009.00656.x.

    Article  CAS  PubMed  Google Scholar 

  28. Kobayashi H, Abe M, Okada K, Tei R, Maruyama N, Kikuchi F, et al. Oral zinc supplementation reduces the erythropoietin responsiveness index in patients on hemodialysis. Nutrients. 2015;7(5):3783–95. https://doi.org/10.3390/nu7053783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abdelhaleim AF, Abdo Soliman JS, Amer AY, Abdo Soliman JS. Association of zinc deficiency with iron deficiency anemia and its symptoms: results from a case–control study. Cureus. 2019;11(1):e3811. https://doi.org/10.7759/cureus.3811.

    Article  PubMed  Google Scholar 

  30. Gurgoze MK, Olcucu A, Aygun AD, Taskin E, Kilic M. Serum and hair levels of zinc, selenium, iron, and copper in children with iron-deficiency anemia. Biol Trace Elem Res. 2006;111(1–3):23–9. https://doi.org/10.1385/BTER:111:1:23.

    Article  CAS  PubMed  Google Scholar 

  31. Ece A, Uyanik BS, Iscan A, Ertan P, Yigitoglu MR. Increased serum copper and decreased serum zinc levels in children with iron deficiency anemia. Biol Trace Elem Res. 1997;59(1–3):31–9. https://doi.org/10.1007/BF02783227.

    Article  CAS  PubMed  Google Scholar 

  32. Ozhan O, Erdem N, Aydogdu I, Erkurt A, Kuku I. Serum zinc levels in iron deficient women: a case-control study. Turkish J Haematol. 2016;33(2):156–8. https://doi.org/10.4274/tjh.2015.0206.

    Article  CAS  Google Scholar 

  33. Labbe RF, Vreman HJ, Stevenson DK. Zinc protoporphyrin: a metabolite with a mission. Clin Chem. 1999;45(12):2060–72.

    Article  CAS  Google Scholar 

  34. Tonelli M, Wiebe N, Hemmelgarn B, Klarenbach S, Field C, Manns B, et al. Trace elements in hemodialysis patients: a systematic review and meta-analysis. BMC Med. 2009;7:25. https://doi.org/10.1186/1741-7015-7-25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vanholder R, Cornelis R, Dhondt A, Lameire N. The role of trace elements in uraemic toxicity. Nephrol Dial Transplant. 2002;17(Suppl 2):2–8. https://doi.org/10.1093/ndt/17.suppl_2.2.

    Article  CAS  PubMed  Google Scholar 

  36. Kang YJ, Jiang Y, Saari JT. Changes in copper and zinc status and response to dietary copper deficiency in metallothionein-overexpressing transgenic mouse heart. J Nutr Biochem. 2007;18(11):714–8. https://doi.org/10.1016/j.jnutbio.2006.10.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. European Association for Study of L. EASL clinical practice guidelines: Wilson’s disease. J Hepatol. 2012;56(3):671–85. https://doi.org/10.1016/j.jhep.2011.11.007.

    Article  Google Scholar 

  38. Dziezyc K, Karlinski M, Litwin T, Czlonkowska A. Compliant treatment with anti-copper agents prevents clinically overt Wilson’s disease in pre-symptomatic patients. Eur J Neurol. 2014;21(2):332–7. https://doi.org/10.1111/ene.12320.

    Article  CAS  PubMed  Google Scholar 

  39. Zheng J, Mao X, Ling J, He Q, Quan J. Low serum levels of zinc, copper, and iron as risk factors for osteoporosis: a meta-analysis. Biol Trace Elem Res. 2014;160(1):15–23. https://doi.org/10.1007/s12011-014-0031-7.

    Article  CAS  PubMed  Google Scholar 

  40. Li Z, Wang W, Liu H, Li S, Zhang D. The association of serum zinc and copper with hypertension: A meta-analysis. J Trace Elem Med Biol. 2019;53:41–8. https://doi.org/10.1016/j.jtemb.2019.01.018.

    Article  CAS  PubMed  Google Scholar 

  41. Chapter 1: definition and classification of CKD. Kidney Int Suppl. 2013; 3(1):19–62. https://doi.org/10.1038/kisup.2012.64.

  42. Japanese Society of N. Evidence-based practice guideline for the treatment of CKD. Clin Exp Nephrol. 2009;13(6):537–66. https://doi.org/10.1007/s10157-009-0237-8.

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Shinji Yasuno and Ms. Yasuyo Yamazaki, Clinical Research Support Center, the Jikei University School of Medicine, Tokyo, Japan for their technical support in the management of the SS-MIX2 system. We are grateful to the patients involved in our study for their participation and contributions.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Research idea and study design: YM, AN, AF and TY; data acquisition: YM; data analysis/interpretation: YM; statistical analysis: YM; supervision or mentorship: AN, AF and TY. YM takes responsibility that this study has been reported honestly, accurately and transparently, and accepts accountability for the overall work by ensuring that questions pertaining to the accuracy or integrity of any portion of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Yukio Maruyama.

Ethics declarations

Conflict of interest

No authors have any conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10157_2021_2046_MOESM1_ESM.docx

Supplementary file1 (DOCX 30 KB) Table S1: Factors contributing to serum zinc levels, treating eGFR as continuous variable, before multiple imputation. Table S2: Factors contributing to serum zinc levels, treating eGFR as dichotomous variable, before multiple imputation.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maruyama, Y., Nakashima, A., Fukui, A. et al. Zinc deficiency: its prevalence and relationship to renal function in Japan. Clin Exp Nephrol 25, 771–778 (2021). https://doi.org/10.1007/s10157-021-02046-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-021-02046-3

Keywords

Navigation