Skip to main content
Log in

PPAR-δ activation reduces cisplatin-induced apoptosis via inhibiting p53/Bax/caspase-3 pathway without modulating autophagy in murine renal proximal tubular cells

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Cisplatin-induced injury of renal proximal tubular cells results basically from increased apoptosis via mitochondrial damage, and is mitigated by appropriate enhancement of autophagy. Peroxisome proliferator-activated receptor-delta (PPAR-δ) reportedly protects against not only mitochondrial damages but also enhances autophagy. Thus, PPAR-δ may protect against cisplatin-induced kidney injury.

Methods

We examined the protective effects of PPAR-δ activation on cisplatin-induced cellular injury and their detailed mechanisms in a murine renal proximal tubular (mProx) cell line using GW0742, an authentic PPAR-δ activator. Cisplatin-induced cell damages were evaluated by TUNEL assay and immunoblot analyses for p53, 14-3-3, Bax, Bcl2, cytochrome C, and activated caspases. Autophagy status was examined by immunoblot analyses for p62 and LC3.

Results

GW0742 suppressed cisplatin-induced apoptosis of mProx cells by reducing the activation of caspase-3 via attenuating the phosphorylation of p53 and 14-3-3, mitochondrial Bax accumulation, cytochrome C release from mitochondria to the cytosol and ensuing cytosolic caspase-9 activation. In contrast, GW0742 did not diminish cisplatin-enhanced activation of caspases-8 or -12 as extrinsic or endothelium reticulum apoptotic pathways, respectively. The inhibitory effect of GW0742 on cisplatin-induced caspase-3 activation was significantly diminished by silencing of the PPAR-δ gene expression. GW0742 itself had no influence on starvation-stimulated or cisplatin-induced autophagy in mProx cells, suggesting that the protective effects were not mediated by autophagy modification.

Conclusion

Our results indicate that GW0742 may serve as a candidate agent to mitigate cisplatin nephrotoxicity via inhibiting the mitochondrial apoptotic pathway considerably depending on PPAR-δ, without modulating autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ozkok A, Edelstein CL. Pathophysiology of cisplatin-induced acute kidney injury. Biomed Res Int. 2014;2014:967826. https://doi.org/10.1155/2014/967826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Oh GS, Kim HJ, Shen A, Lee SB, Khadka D, Pandit A, et al. Cisplatin-induced kidney dysfunction and perspectives on improving treatment strategies. Electrolyte Blood Press. 2014;12(2):55–65. https://doi.org/10.5049/EBP.2014.12.2.55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Park MS, De Leon M, Devarajan P. Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J Am Soc Nephrol. 2002;13(4):858–65.

    Article  CAS  PubMed  Google Scholar 

  4. Nagothu KK, Bhatt R, Kaushal GP, Portilla D. Fibrate prevents cisplatin-induced proximal tubule cell death. Kidney Int. 2005;68(6):2680–93. https://doi.org/10.1111/j.1523-1755.2005.00739.x.

    Article  CAS  PubMed  Google Scholar 

  5. Wei Q, Dong G, Franklin J, Dong Z. The pathological role of Bax in cisplatin nephrotoxicity. Kidney Int. 2007;72(1):53–62. https://doi.org/10.1038/sj.ki.5002256.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang D, Liu Y, Wei Q, Huo Y, Liu K, Liu F, et al. Tubular p53 regulates multiple genes to mediate AKI. J Am Soc Nephrol. 2014;25(10):2278–89. https://doi.org/10.1681/ASN.2013080902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang C, Kaushal V, Shah SV, Kaushal GP. Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. Am J Physiol Renal Physiol. 2008;294(4):F777–87. https://doi.org/10.1152/ajprenal.00590.2007.

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi A, Kimura T, Takabatake Y, Namba T, Kaimori J, Kitamura H, et al. Autophagy guards against cisplatin-induced acute kidney injury. Am J Pathol. 2012;180(2):517–25. https://doi.org/10.1016/j.ajpath.2011.11.001.

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Gui Y, Ren J, Liu X, Feng Y, Zeng Z, et al. Metformin protects against cisplatin-induced tubular cell apoptosis and acute kidney injury via AMPKalpha-regulated autophagy induction. Sci Rep. 2016;6:23975. https://doi.org/10.1038/srep23975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang M, Wei Q, Dong G, Komatsu M, Su Y, Dong Z. Autophagy in proximal tubules protects against acute kidney injury. Kidney Int. 2012;82(12):1271–83. https://doi.org/10.1038/ki.2012.261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guan Y, Breyer MD. Peroxisome proliferator-activated receptors (PPARs): novel therapeutic targets in renal disease. Kidney Int. 2001;60(1):14–30. https://doi.org/10.1046/j.1523-1755.2001.00766.x.

    Article  CAS  PubMed  Google Scholar 

  12. Barish GD, Narkar VA, Evans RM. PPAR delta: a dagger in the heart of the metabolic syndrome. J Clin Invest. 2006;116(3):590–7. https://doi.org/10.1172/JCI27955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee CH, Chawla A, Urbiztondo N, Liao D, Boisvert WA, Evans RM, et al. Transcriptional repression of atherogenic inflammation: modulation by PPARdelta. Science. 2003;302(5644):453–7. https://doi.org/10.1126/science.1087344.

    Article  CAS  PubMed  Google Scholar 

  14. Coll T, Alvarez-Guardia D, Barroso E, Gomez-Foix AM, Palomer X, Laguna JC, et al. Activation of peroxisome proliferator-activated receptor-{delta} by GW501516 prevents fatty acid-induced nuclear factor-{kappa}B activation and insulin resistance in skeletal muscle cells. Endocrinology. 2010;151(4):1560–9. https://doi.org/10.1210/en.2009-1211.

    Article  CAS  PubMed  Google Scholar 

  15. Mikami D, Kimura H, Kamiyama K, Torii K, Kasuno K, Takahashi N, et al. Telmisartan activates endogenous peroxisome proliferator-activated receptor-delta and may have anti-fibrotic effects in human mesangial cells. Hypertens Res. 2014;37(5):422–31. https://doi.org/10.1038/hr.2013.157.

    Article  CAS  PubMed  Google Scholar 

  16. Kimura H, Mikami D, Kamiyama K, Sugimoto H, Kasuno K, Takahashi N, et al. Telmisartan, a possible PPAR-delta agonist, reduces TNF-alpha-stimulated VEGF-C production by inhibiting the p38MAPK/HSP27 pathway in human proximal renal tubular cells. Biochem Biophys Res Commun. 2014;454(2):320–7. https://doi.org/10.1016/j.bbrc.2014.10.077.

    Article  CAS  PubMed  Google Scholar 

  17. Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, et al. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol. 2004;2(10):e294. https://doi.org/10.1371/journal.pbio.0020294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang P, Liu J, Li Y, Wu S, Luo J, Yang H, et al. Peroxisome proliferator-activated receptor delta is an essential transcriptional regulator for mitochondrial protection and biogenesis in adult heart. Circ Res. 2010;106(5):911–9. https://doi.org/10.1161/CIRCRESAHA.109.206185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li Q, Li L, Wang F, Chen J, Zhao Y, Wang P, et al. Dietary capsaicin prevents nonalcoholic fatty liver disease through transient receptor potential vanilloid 1-mediated peroxisome proliferator-activated receptor delta activation. Pflugers Arch. 2013;465(9):1303–16. https://doi.org/10.1007/s00424-013-1274-4.

    Article  CAS  PubMed  Google Scholar 

  20. Palomer X, Capdevila-Busquets E, Botteri G, Salvado L, Barroso E, Davidson MM, et al. PPARbeta/delta attenuates palmitate-induced endoplasmic reticulum stress and induces autophagic markers in human cardiac cells. Int J Cardiol. 2014;174(1):110–8. https://doi.org/10.1016/j.ijcard.2014.03.176.

    Article  PubMed  Google Scholar 

  21. Okada H, Kikuta T, Inoue T, Kanno Y, Ban S, Sugaya T, et al. Dexamethasone induces connective tissue growth factor expression in renal tubular epithelial cells in a mouse strain-specific manner. Am J Pathol. 2006;168(3):737–47. https://doi.org/10.2353/ajpath.2006.050656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee JM, Wagner M, Xiao R, Kim KH, Feng D, Lazar MA, et al. Nutrient-sensing nuclear receptors coordinate autophagy. Nature. 2014;516(7529):112–5. https://doi.org/10.1038/nature13961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wei Y, Pattingre S, Sinha S, Bassik M, Levine B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell. 2008;30(6):678–88. https://doi.org/10.1016/j.molcel.2008.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim YS, Jung MH, Choi MY, Kim YH, Sheverdin V, Kim JH, et al. Glutamine attenuates tubular cell apoptosis in acute kidney injury via inhibition of the c-Jun N-terminal kinase phosphorylation of 14-3-3. Crit Care Med. 2009;37(6):2033–44. https://doi.org/10.1097/CCM.0b013e3181a005ba.

    Article  CAS  PubMed  Google Scholar 

  25. Barlaka E, Gorbe A, Gaspar R, Paloczi J, Ferdinandy P, Lazou A. Activation of PPARbeta/delta protects cardiac myocytes from oxidative stress-induced apoptosis by suppressing generation of reactive oxygen/nitrogen species and expression of matrix metalloproteinases. Pharmacol Res. 2015;95–96:102–10. https://doi.org/10.1016/j.phrs.2015.03.008.

    Article  CAS  PubMed  Google Scholar 

  26. Bao XC, Fang YQ, You P, Zhang S, Ma J. Protective role of peroxisome proliferator-activated receptor beta/delta in acute lung injury induced by prolonged hyperbaric hyperoxia in rats. Respir Physiol Neurobiol. 2014;199:9–18. https://doi.org/10.1016/j.resp.2014.04.004.

    Article  CAS  PubMed  Google Scholar 

  27. An YQ, Zhang CT, Du Y, Zhang M, Tang SS, Hu M, et al. PPARdelta agonist GW0742 ameliorates Abeta1-42-induced hippocampal neurotoxicity in mice. Metab Brain Dis. 2016;31(3):663–71. https://doi.org/10.1007/s11011-016-9800-7.

    Article  CAS  PubMed  Google Scholar 

  28. Kaushal GP, Shah SV. Autophagy in acute kidney injury. Kidney Int. 2016;89(4):779–91. https://doi.org/10.1016/j.kint.2015.11.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants-in-Aid of the Japan Society of Promotion of Science (JSPS KAKENHI Grant Numbers: JP15K09252 to H.K., JP15H04836 to M.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Kimura.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 892 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, J., Kimura, H., Yokoi, S. et al. PPAR-δ activation reduces cisplatin-induced apoptosis via inhibiting p53/Bax/caspase-3 pathway without modulating autophagy in murine renal proximal tubular cells. Clin Exp Nephrol 25, 598–607 (2021). https://doi.org/10.1007/s10157-021-02039-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-021-02039-2

Keywords

Navigation