Skip to main content
Log in

Serum levels of galactose-deficient IgA1 in Chinese children with IgA nephropathy, IgA vasculitis with nephritis, and IgA vasculitis

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Objective

IgA nephropathy (IgAN) and IgA vasculitis with nephritis (IgAV-N) are related diseases. Galactose-deficient IgA1 (Gd-IgA1) plays an important role in the pathology of IgAV-N and IgAN, so we aim to compare the serum levels of Gd-IgA1 in Chinese pediatric patients with IgAN, IgAV-N, and IgAV.

Methods

We retrospectively enrolled 52 patients with IgAN, 57 patients with IgAV-N, 26 patients with IgAV, and 40 healthy children. The serum levels of Gd-IgA1 were measured at the time of biopsy using a lectin-based ELISA method.

Results

Gd-IgA1 levels in IgAV-N patients and IgAN patients were higher than in healthy controls (303.94 ± 39.37 U/ml, 314.91 ± 47.79 U/ml vs. 273.57 ± 48.29 U/ml, P < 0.001), and Gd-IgA1 levels in IgAV-N patients were higher than in IgAV patients (303.94 ± 39/ml vs. 286. 21 ± 38.81 U/ml, P = 0.059), but the latter result is not statistically significant. The Gd-IgA1 levels in IgAV patients were comparable with those in healthy controls (286.21 ± 38.81 U/ml vs. 273.57 ± 48.29 U/ml, P = 0.267). Among the four groups, we did not observe significant correlations of Gd-IgA1 levels with eGFR, proteinuria, or the MEST-C score.

Conclusion

Serum Gd-IgA1 maybe involved in the pathogenesis of the IgAV-N and IgAN. However, we found no statistically significant correlation between Gd-IgA1 levels and clinical and pathological features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen JY, Mao JH. Henoch-Schonlein purpura nephritis in children: incidence, pathogenesis and management. World J Pediatr. 2015;11(1):29–34. https://doi.org/10.1007/s12519-014-0534-5.

    Article  CAS  PubMed  Google Scholar 

  2. Pohl M. Henoch-Schonlein purpura nephritis. PediatrNephrol. 2015;30(2):245–52. https://doi.org/10.1007/s00467-014-2815-6.

    Article  Google Scholar 

  3. Davin JC, Coppo R. Henoch-Schonlein purpura nephritis in children. Nat Rev Nephrol. 2014;10(10):563–73. https://doi.org/10.1038/nrneph.2014.126.

    Article  CAS  PubMed  Google Scholar 

  4. Magistroni R, D'Agati VD, Appel GB, Kiryluk K. New developments in the genetics, pathogenesis, and therapy of IgA nephropathy. Kidney Int. 2015;88(5):974–89. https://doi.org/10.1038/ki.2015.252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yeo SC, Cheung CK, Barratt J. New insights into the pathogenesis of IgA nephropathy. PediatrNephrol. 2018;33(5):763–77. https://doi.org/10.1007/s00467-017-3699-z.

    Article  Google Scholar 

  6. Davin JC, Ten Berge IJ, Weening JJ. What is the difference between IgA nephropathy and Henoch-Schonlein purpura nephritis? Kidney Int. 2001;59(3):823–34. https://doi.org/10.1046/j.1523-1755.2001.059003823.x.

    Article  CAS  PubMed  Google Scholar 

  7. Li YT, Lv JC, Li GT, Jiang L, Song YH, Zhang H. Comparative analysis of clinicopathological findings and outcome of Henoch-Schonlein nephritis and IgA nephropathy in adults. J Peking Univ Health Sci. 2007;39(5):458–61.

    CAS  Google Scholar 

  8. Suzuki H, Yasutake J, Makita Y, Tanbo Y, Yamasaki K, Sofue T, et al. IgA nephropathy and IgA vasculitis with nephritis have a shared feature involving galactose-deficient IgA1-oriented pathogenesis. Kidney Int. 2018;93(3):700–5. https://doi.org/10.1016/j.kint.2017.10.019.

    Article  CAS  PubMed  Google Scholar 

  9. Kiryluk K, Moldoveanu Z, Sanders JT, Eison TM, Suzuki H, Julian BA, et al. Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch-Schonlein purpura nephritis. Kidney Int. 2011;80(1):79–877. https://doi.org/10.1038/ki.2011.16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bagchi S, Lingaiah R, Mani K, Barwad A, Singh G, Balooni V, et al. Significance of serum galactose deficient IgA1 as a potential biomarker for IgA nephropathy: a case control study. PLoS ONE. 2019;14(3):e0214256. https://doi.org/10.1371/journal.pone.0214256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao N, Hou P, Lv J, Moldoveanu Z, Li Y, Kiryluk K, et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int. 2012;82(7):790–6. https://doi.org/10.1038/ki.2012.197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang X, Xie X, Shi S, Liu L, Lv J, Zhang H. Plasma galactose-deficient immunoglobulin A1 and loss of kidney function in patients with immunoglobulin A vasculitis nephritis. Nephrol Dial Transpl. 2019. https://doi.org/10.1093/ndt/gfz151.

    Article  Google Scholar 

  13. Kang ZJ, Liu B, Li ZH, Duan CR, Wu TH, Xun M, et al. Value of galactose-deficient IgA1 in the early diagnosis of Henoch-Schonlein purpura nephritis in children. Chin J Contemp Pediatr. 2019;21(2):172–5.

    Google Scholar 

  14. Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013;65(1):1–11. https://doi.org/10.1002/art.37715.

    Article  CAS  PubMed  Google Scholar 

  15. Neufeld M, Molyneux K, Pappelbaum KI, Mayer-Hain S, von Hodenberg C, Ehrchen J, et al. Galactose-deficient IgA1 in skin and serum from patients with skin-limited and systemic IgA vasculitis. J Am Acad Dermatol. 2019;81(5):1078–85. https://doi.org/10.1016/j.jaad.2019.03.029.

    Article  CAS  PubMed  Google Scholar 

  16. Mizerska-Wasiak M, Gajewski L, Cichon-Kawa K, Maldyk J, Dziedzic-Jankowska K, Leszczynska B, et al. Serum GDIgA1 levels in children with IgA nephropathy and Henoch-Schonlein nephritis. Central-Eur J Immunol. 2018;43(2):162–7. https://doi.org/10.5114/ceji.2018.77386.

    Article  CAS  Google Scholar 

  17. Wada Y, Matsumoto K, Suzuki T, Saito T, Kanazawa N, Tachibana S, et al. Clinical significance of serum and mesangial galactose-deficient IgA1 in patients with IgA nephropathy. PLoS ONE. 2018;13(11):e0206865. https://doi.org/10.1371/journal.pone.0206865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lau KK, Wyatt RJ, Moldoveanu Z, Tomana M, Julian BA, Hogg RJ, et al. Serum levels of galactose-deficient IgA in children with IgA nephropathy and Henoch-Schonlein purpura. PediatrNephrol. 2007;22(12):2067–72. https://doi.org/10.1007/s00467-007-0623-y.

    Article  Google Scholar 

  19. Vidal-Petiot E, Flamant M. Measurement and estimation of glomerular filtration rate. NephrolTher. 2017;13(7):560–8. https://doi.org/10.1016/j.nephro.2017.10.001.

    Article  Google Scholar 

  20. Coppo R, Troyanov S, Bellur S, Cattran D, Cook HT, Feehally J, et al. Validation of the Oxford classification of IgA nephropathy in cohorts with different presentations and treatments. Kidney Int. 2014;86(4):828–36. https://doi.org/10.1038/ki.2014.63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Markowitz G. Glomerular disease: updated Oxford classification of IgA nephropathy: a new MEST-C score. Nat Rev Nephrol. 2017;13(7):385–6. https://doi.org/10.1038/nrneph.2017.67.

    Article  CAS  PubMed  Google Scholar 

  22. Xu K, Zhang L, Ding J, Wang S, Su B, Xiao H, et al. Value of the Oxford classification of IgA nephropathy in children with Henoch-Schonlein purpura nephritis. J Nephrol. 2018;31(2):279–86. https://doi.org/10.1007/s40620-017-0457-z.

    Article  PubMed  Google Scholar 

  23. Allen AC, Willis FR, Beattie TJ, Feehally J. Abnormal IgA glycosylation in Henoch-Schonlein purpura restricted to patients with clinical nephritis. Nephrol Dial Transpl. 1998;13(4):930–4. https://doi.org/10.1093/ndt/13.4.930.

    Article  CAS  Google Scholar 

  24. Shima Y, Nakanishi K, Hama T, Sato M, Mukaiyama H, Togawa H, et al. Biopsy timing and Oxford classification variables in childhood/adolescent IgA nephropathy. PediatrNephrol. 2015;30(2):293–9. https://doi.org/10.1007/s00467-014-2862-z.

    Article  Google Scholar 

  25. Jiang XY, Mo Y, Sun LZ, Yue ZH, Chen SM, Wu W. Efficacy of methylprednisolone, cyclophosphamide in pediatric IgA nephropathy assessed by renal biopsy. Clin Nephrol. 2009;71(6):625–31. https://doi.org/10.5414/cnp71625.

    Article  CAS  PubMed  Google Scholar 

  26. Roccatello D, Rossi D, Marletto F, Naretto C, Sciascia S, Baldovino S, et al. Long-term effects of methylprednisolone pulses and mycophenolate mofetil in IgA nephropathy patients at risk of progression. J Nephrol. 2012;25(2):198–203. https://doi.org/10.5301/JN.2011.8452.

    Article  CAS  PubMed  Google Scholar 

  27. Nguyen C, Konig K, Tam FWK, Hopfer H, Molyneux K, Binet FI, et al. Higher serum galactose-deficient immunoglobulin A1 concentration is associated with stronger mesangial cellular inflammatory response and more severe histologic findings in immunoglobulin A nephropathy. Clin Kidney J. 2019;12(2):232–8. https://doi.org/10.1093/ckj/sfy068.

    Article  CAS  PubMed  Google Scholar 

  28. Yanagihara T, Brown R, Hall S, Moldoveanu Z, Goepfert A, Tomana M, et al. In vitro-generated immune complexes containing galactose-deficient IgA1 stimulate proliferation of mesangial cells. Results Immunol. 2012;2:166–72. https://doi.org/10.1016/j.rinim.2012.08.002.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yasutake J, Suzuki Y, Suzuki H, Hiura N, Yanagawa H, Makita Y, et al. Novel lectin-independent approach to detect galactose-deficient IgA1 in IgA nephropathy. Nephrol Dial Transpl. 2015;30(8):1315–21. https://doi.org/10.1093/ndt/gfv221.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all our colleagues at the Department of Nephrology, Beijing Children’s Hospital, China for providing the pediatric patient case information, and Dr. Lin Hua of the School of Biomedical Engineering, Capital Medical University, China for providing help with the statistical analysis.

Funding

This work was supported by the Capital Health Research and Development of Special Grant (No. 2016–2-2094), the Research on the Application of Capital Clinical Characteristics Program of Beijing Municipal Science and Technology Commission (No. Z161100000516106), and the Project of Beijing Science and Technology Commission (No. D181100000118006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaorong Liu.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exist.

Ethical approval

This study was approved by the Ethics Committee of the Beijing Children’s Hospital (Reference Number: 2018183). For each patient, informed consent was obtained from a parent or legally authorized representative.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, M., Zhang, X., Li, X. et al. Serum levels of galactose-deficient IgA1 in Chinese children with IgA nephropathy, IgA vasculitis with nephritis, and IgA vasculitis. Clin Exp Nephrol 25, 37–43 (2021). https://doi.org/10.1007/s10157-020-01968-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-020-01968-8

Keywords

Navigation