Skip to main content
Log in

Extracellular vesicles carrying miRNAs in kidney diseases: a systemic review

  • Review article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

MiRNAs play essential roles in processes of physiological status and disease conditions including in renal diseases, while extracellular vesicles (EVs) serve as important mediators for cell–cell communication. In body fluid or extracellular spaces, miRNAs are packaged into EVs and transferred to targeted cells to perform their bioeffects under particular conditions. In the present review, we aim to summarize and update the known and verified EV-carrying miRNAs (EV-miRNAs) and their general roles in kidney diseases. In addition to performing a systemic analysis, we try to provide some clues and perspectives for the future study of EV-miRNAs in renal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AKI:

Acute kidney injury

IgAN:

IgA Nephropathy

FSGS/MCD:

Focal segmental glomerulosclerosis/minimal change disease (nephropathy)

CKD:

Chronic kidney disease

DN:

Diabetic nephropathy

DKD:

Diabetic kidney disease

LN:

Lupus nephritis

DM:

Diabetes mellitus

MA:

Albuminuri

HG:

High glucos

EMP:

Endothelial microparticle

MIC/MAC:

Microalbuminuria/macroabuminuria

NGT:

Normal glucose

EH:

Essential hypertension

RVH:

Renovascular hypertension

ccRCC:

Clear cell renal cell carcinoma

RAPC:

Renal artery-derived vascular progenitor cells

hWJMSC:

Human Wharton jelly mesenchymal stromal cells

ECFC:

Human endothelial colony forming cell

BM:

Bone marrow

MSC:

Mesenchymal stromal cells

HLSC:

Human liver stem cell

MC:

Mesangial cells

UUO:

Unilateral ureteral occlusion

IRI:

Ischemia–reperfusion injury

EPO:

Erythropoietin

MV:

Microvesicles

HCAEC:

Human coronary artery endothelial cells

References

  1. Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 2018;19(12):808.

    CAS  Google Scholar 

  2. Viereck J, Thum T. Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ Res. 2017;120(2):381–99.

    CAS  Google Scholar 

  3. Godlewski J, et al. Belonging to a network–microRNAs, extracellular vesicles, and the glioblastoma microenvironment. Neuro Oncol. 2015;17(5):652–62.

    CAS  Google Scholar 

  4. Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.

    CAS  Google Scholar 

  5. Zhang W, et al. Extracellular vesicles in diagnosis and therapy of kidney diseases. Am J Physiol Renal Physiol. 2016;311(5):F844–F851851.

    CAS  Google Scholar 

  6. Valadi H, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.

    CAS  Google Scholar 

  7. Deregibus MC, et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood. 2007;110(7):2440–8.

    CAS  Google Scholar 

  8. Salvi V, et al. Exosome-delivered microRNAs promote IFN-alpha secretion by human plasmacytoid DCs via TLR7. JCI Insight. 2018;3(10):e98204.

    Google Scholar 

  9. Zhang Y, et al. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature. 2017;548(7665):52–7.

    CAS  Google Scholar 

  10. Vinas JL, et al. Transfer of microRNA-486-5p from human endothelial colony forming cell-derived exosomes reduces ischemic kidney injury. Kidney Int. 2016;90(6):1238–50.

    CAS  Google Scholar 

  11. Yanez-Mo M, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.

    Google Scholar 

  12. Shurtleff MJ, et al. Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. Elife. 2016;5:e19276.

    Google Scholar 

  13. Bitzer M, Ben-Dov IZ, Thum T. Microparticles and microRNAs of endothelial progenitor cells ameliorate acute kidney injury. Kidney Int. 2012;82(4):375–7.

    CAS  Google Scholar 

  14. Gracia T, et al. Urinary exosomes contain microRNAs capable of paracrine modulation of tubular transporters in kidney. Sci Rep. 2017;7:40601.

    CAS  Google Scholar 

  15. Rossol-Allison J, Ward CJ. Exosomes to the Rescue. J Am Soc Nephrol. 2015;26(10):2303–4.

    CAS  Google Scholar 

  16. Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest. 2011;121(11):4210–21.

    CAS  Google Scholar 

  17. Hoste E, et al. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol. 2018;14(10):607–25.

    CAS  Google Scholar 

  18. Collino F, et al. AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying microRNAs. J Am Soc Nephrol. 2015;26(10):2349–60.

    CAS  Google Scholar 

  19. Ichii O, et al. Altered expression of microRNA miR-146a correlates with the development of chronic renal inflammation. Kidney Int. 2012;81(3):280–92.

    CAS  Google Scholar 

  20. Cho YE, et al. Circulating plasma and exosomal micrornas as indicators of drug-induced organ injury in rodent models. Biomol Ther (Seoul). 2017;25(4):367–73.

    CAS  Google Scholar 

  21. Jia P, et al. MicroRNA-21 is required for local and remote ischemic preconditioning in multiple organ protection against sepsis. Crit Care Med. 2017;45(7):e703–e710710.

    CAS  Google Scholar 

  22. Lindoso RS, et al. Extracellular vesicles released from mesenchymal stromal cells modulate miRNA in renal tubular cells and inhibit ATP depletion injury. Stem Cells Dev. 2014;23(15):1809–19.

    CAS  Google Scholar 

  23. Pang P, et al. Human vascular progenitor cells derived from renal arteries are endothelial-like and assist in the repair of injured renal capillary networks. Kidney Int. 2017;91(1):129–43.

    CAS  Google Scholar 

  24. Gu D, et al. Mesenchymal stromal cells derived extracellular vesicles ameliorate acute renal ischemia reperfusion injury by inhibition of mitochondrial fission through miR-30. Stem Cells Int. 2016;2016:2093940.

    Google Scholar 

  25. Cantaluppi V, et al. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int. 2012;82(4):412–27.

    CAS  Google Scholar 

  26. Romagnani P, et al. Chronic kidney disease. Nat Rev Dis Primers. 2017;3:17088.

    Google Scholar 

  27. Rodrigues JC, Haas M, Reich HN. IgA Nephropathy. Clin J Am Soc Nephrol. 2017;12(4):677–86.

    CAS  Google Scholar 

  28. Min QH, et al. Differential expression of urinary exosomal microRNAs in IgA nephropathy. J Clin Lab Anal. 2018;32(2):e22226.

    Google Scholar 

  29. Duan ZY, et al. Selection of urinary sediment miRNAs as specific biomarkers of IgA nephropathy. Sci Rep. 2016;6:23498.

    CAS  Google Scholar 

  30. Ramezani A, et al. Circulating and urinary microRNA profile in focal segmental glomerulosclerosis: a pilot study. Eur J Clin Invest. 2015;45(4):394–404.

    CAS  Google Scholar 

  31. Huang Z, et al. Urinary exosomal miR-193a can be a potential biomarker for the diagnosis of primary focal segmental glomerulosclerosis in children. Biomed Res Int. 2017;2017:7298160.

    Google Scholar 

  32. Khurana R, et al. Identification of urinary exosomal noncoding RNAs as novel biomarkers in chronic kidney disease. RNA. 2017;23(2):142–52.

    CAS  Google Scholar 

  33. Lv LL, et al. MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am J Physiol Renal Physiol. 2013;305(8):F1220–F12271227.

    CAS  Google Scholar 

  34. Yu Y, et al. Non-proximal renal tubule-derived urinary exosomal miR-200b as a biomarker of renal fibrosis. Nephron. 2018;139(3):269–82.

    CAS  Google Scholar 

  35. Xie J, et al. The relationship between amniotic fluid miRNAs and congenital obstructive nephropathy. Am J Transl Res. 2017;9(4):1754–63.

    CAS  Google Scholar 

  36. Xie JX, et al. MicroRNA profiling in kidney disease: plasma versus plasma-derived exosomes. Gene. 2017;627:1–8.

    CAS  Google Scholar 

  37. Zhou Y, et al. Secreted fibroblast-derived miR-34a induces tubular cell apoptosis in fibrotic kidney. J Cell Sci. 2014;127(Pt 20):4494–506.

    CAS  Google Scholar 

  38. Wang X, et al. Unique molecular profile of exosomes derived from primary human proximal tubular epithelial cells under diseased conditions. J Extracell Vesicles. 2017;6(1):1314073.

    Google Scholar 

  39. Ichii O, et al. Urinary exosome-derived microRNAs reflecting the changes of renal function and histopathology in dogs. Sci Rep. 2017;7:40340.

    CAS  Google Scholar 

  40. Zhou Y, et al. Erythropoietin protects the tubular basement membrane by promoting the bone marrow to release extracellular vesicles containing tPA-targeting miR-144. Am J Physiol Renal Physiol. 2016;310(1):F27–40.

    CAS  Google Scholar 

  41. Wang B, et al. Mesenchymal Stem Cells Deliver Exogenous MicroRNA-let7c via Exosomes to Attenuate Renal Fibrosis. Mol Ther. 2016;24(7):1290–301.

    CAS  Google Scholar 

  42. Wang Y, et al. Differentially expressed microRNAs in bone marrow mesenchymal stem cell-derived microvesicles in young and older rats and their effect on tumor growth factor-beta1-mediated epithelial-mesenchymal transition in HK2 cells. Stem Cell Res Ther. 2015;6:185.

    Google Scholar 

  43. He J, et al. Micro-vesicles derived from bone marrow stem cells protect the kidney both in vivo and in vitro by microRNA-dependent repairing. Nephrology (Carlton). 2015;20(9):591–600.

    CAS  Google Scholar 

  44. Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. 2017;12(12):2032–45.

    CAS  Google Scholar 

  45. Jansen F, et al. Vascular endothelial microparticles-incorporated microRNAs are altered in patients with diabetes mellitus. Cardiovasc Diabetol. 2016;15:49.

    Google Scholar 

  46. Zheng Z, et al. The coordinated roles of miR-26a and miR-30c in regulating TGFbeta1-induced epithelial-to-mesenchymal transition in diabetic nephropathy. Sci Rep. 2016;6:37492.

    CAS  Google Scholar 

  47. Eissa S, Matboli M, Bekhet MM. Clinical verification of a novel urinary microRNA panel: 133b, -342 and -30 as biomarkers for diabetic nephropathy identified by bioinformatics analysis. Biomed Pharmacother. 2016;83:92–9.

    CAS  Google Scholar 

  48. Jia Y, et al. miRNAs in Urine Extracellular Vesicles as Predictors of Early-Stage Diabetic Nephropathy. J Diabetes Res. 2016;2016:7932765.

    Google Scholar 

  49. Jia Y, et al. Exendin-4 ameliorates high glucose-induced fibrosis by inhibiting the secretion of miR-192 from injured renal tubular epithelial cells. Exp Mol Med. 2018;50(5):56.

    Google Scholar 

  50. Xie Y, et al. Urinary Exosomal MicroRNA Profiling in Incipient Type 2 Diabetic Kidney Disease. J Diabetes Res. 2017;2017:6978984.

    Google Scholar 

  51. Eissa S, et al. Urinary exosomal microRNA panel unravels novel biomarkers for diagnosis of type 2 diabetic kidney disease. J Diabetes Complications. 2016;30(8):1585–92.

    Google Scholar 

  52. Delic D, et al. Urinary Exosomal miRNA Signature in Type II Diabetic Nephropathy Patients. PLoS ONE. 2016;11(3):e0150154.

    Google Scholar 

  53. Prabu P, et al. MicroRNAs from urinary extracellular vesicles are non-invasive early biomarkers of diabetic nephropathy in type 2 diabetes patients with the 'Asian Indian phenotype'. Diabetes Metab. 2018;45(3):276–85.

    Google Scholar 

  54. Ghai V, et al. Genome-wide profiling of urinary extracellular vesicle microRNAs associated with diabetic nephropathy in type 1 diabetes. Kidney Int Rep. 2018;3(3):555–72.

    Google Scholar 

  55. Jia Y, et al. MiR-4756 promotes albumin-induced renal tubular epithelial cell epithelial-to-mesenchymal transition and endoplasmic reticulum stress via targeting Sestrin2. J Cell Physiol. 2019;234(3):2905–15.

    CAS  Google Scholar 

  56. Mohan A, et al. Urinary exosomal microRNA-451-5p is a potential early biomarker of diabetic nephropathy in rats. PLoS ONE. 2016;11(4):e0154055.

    Google Scholar 

  57. Gallo S, et al. Stem cell-derived, microrna-carrying extracellular vesicles: a novel approach to interfering with mesangial cell collagen production in a hyperglycaemic setting. PLoS ONE. 2016;11(9):e0162417.

    Google Scholar 

  58. Yu F, et al. Redefining lupus nephritis: clinical implications of pathophysiologic subtypes. Nat Rev Nephrol. 2017;13(8):483–95.

    Google Scholar 

  59. Sole C, et al. miR-29c in urinary exosomes as predictor of early renal fibrosis in lupus nephritis. Nephrol Dial Transplant. 2015;30(9):1488–96.

    CAS  Google Scholar 

  60. Perez-Hernandez J, et al. Increased urinary exosomal microRNAs in patients with systemic lupus erythematosus. PLoS ONE. 2015;10(9):e0138618.

    Google Scholar 

  61. Tangtanatakul P, et al. Down-regulation of let-7a and miR-21 in urine exosomes from lupus nephritis patients during disease flare. Asian Pac J Allergy Immunol. 2018;37(4):189–97.

    Google Scholar 

  62. Ichii O, et al. Decreased miR-26a expression correlates with the progression of podocyte injury in autoimmune glomerulonephritis. PLoS ONE. 2014;9(10):e110383.

    Google Scholar 

  63. Kwon SH, et al. Differential expression of microRNAs in urinary extracellular vesicles obtained from hypertensive patients. Am J Kidney Dis. 2016;68(2):331–2.

    CAS  Google Scholar 

  64. Perez-Hernandez J, et al. Urinary exosome miR-146a is a potential marker of albuminuria in essential hypertension. J Transl Med. 2018;16(1):228.

    CAS  Google Scholar 

  65. Kim MH, et al. Urinary exosomal viral microRNA as a marker of BK virus nephropathy in kidney transplant recipients. PLoS ONE. 2017;12(12):e0190068.

    Google Scholar 

  66. Butz H, et al. Exosomal microRNAs are diagnostic biomarkers and can mediate cell-cell communication in renal cell carcinoma. Eur Urol Focus. 2016;2(2):210–8.

    Google Scholar 

  67. Zhang W, et al. MicroRNAs in serum exosomes as potential biomarkers in clear-cell renal cell carcinoma. Eur Urol Focus. 2016;4(3):412–9.

    Google Scholar 

  68. Zhou X, et al. Enhancer of zeste homolog 2 inhibition attenuates renal fibrosis by maintaining smad7 and phosphatase and tensin homolog expression. J Am Soc Nephrol. 2016;27(7):2092–108.

    CAS  Google Scholar 

  69. Luo J, et al. Serum glucocorticoid-regulated kinase 1 blocks CKD-induced muscle wasting via inactivation of FoxO3a and Smad2/3. J Am Soc Nephrol. 2016;27(9):2797–808.

    CAS  Google Scholar 

  70. Kikuchi H, et al. Failure to sense energy depletion may be a novel therapeutic target in chronic kidney disease. Kidney Int. 2019;95(1):123–37.

    CAS  Google Scholar 

  71. Tang C, et al. P53 in kidney injury and repair: Mechanism and therapeutic potentials. Pharmacol Ther. 2018;195:5–12.

    Google Scholar 

  72. ÓhAinmhire E, et al. A conditionally immortalized Gli1-positive kidney mesenchymal cell line models myofibroblast transition. Am J Physiol Renal Physiol. 2018;316(1):F63–F75.

    Google Scholar 

  73. Randles MJ, et al. Genetic background is a key determinant of glomerular extracellular matrix composition and organization. J Am Soc Nephrol. 2015;26(12):3021–34.

    CAS  Google Scholar 

  74. Kato M, et al. Role of the Akt/FoxO3a pathway in TGF-beta1-mediated mesangial cell dysfunction: a novel mechanism related to diabetic kidney disease. J Am Soc Nephrol. 2006;17(12):3325–35.

    CAS  Google Scholar 

  75. Zhang W, et al. Platycodon grandiflorum saponins ameliorate cisplatin-induced acute nephrotoxicity through the NF-kappaB-mediated inflammation and PI3K/Akt/apoptosis signaling pathways. Nutrients. 2018;10(9):1328.

    Google Scholar 

  76. Zhang Aiqing, et al. Wang, miRNA-23a/27a attenuates muscle atrophy and renal fibrosis through muscle-kidney crosstalk. J Cachexia Sarcopenia Muscle. 2018;9(4):755–70.

    Google Scholar 

  77. Wang Y, et al. Influence of erythropoietin on microvesicles derived from mesenchymal stem cells protecting renal function of chronic kidney disease. Stem Cell Res Ther. 2015;6(1):100.

    Google Scholar 

Download references

Acknowledgements

The study was supported by grants from the National Natural Sciences Foundation of China (81870498, 81900633).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 212 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Yi, B., Yang, SK. et al. Extracellular vesicles carrying miRNAs in kidney diseases: a systemic review. Clin Exp Nephrol 24, 1103–1121 (2020). https://doi.org/10.1007/s10157-020-01947-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-020-01947-z

Keywords

Navigation