Skip to main content
Log in

Dynamic variation of kidney injury molecule-1 mRNA and protein expression in blood and urine of renal transplant recipients: a cohort study

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Acute renal dysfunction still constitutes a highly significant obstacle to renal transplantation outcome. Kidney injury molecule-1 is highly upregulated in proximal tubular cells and shed into the urine and blood circulation following kidney injury. The aim of current cohort study was to evaluate the urine KIM-1 (uKIM-1) mRNA expression level and its protein concentration in blood and urine samples to determine whether sequential monitoring of KIM-1 in renal allograft recipients is a reliable biomarker for predicting the clinical status and outcome.

Methods

Both uKIM-1 mRNA expression level and the level of serum and uKIM-1 protein concentration in the 52 renal transplant recipients were respectively quantified using real-time PCR and ELISA methods at 2, 90 and 180 days after transplantation.

Result

KIM-1 mRNA and protein expression level in the blood and urine samples of patients with graft dysfunction was significantly higher than patients with well-functioning graft on days 2, 90 and 180 after transplantation. Receiver-operating characteristic curve analysis of mRNA and protein expression levels showed that urinary and blood KIM-1 at months 3 and 6 could predict acute renal dysfunction at 6 months and 1 year after transplantation.

Conclusion

Sequential monitoring of uKIM-1 mRNA expression level and its protein concentration in the serum and urine samples of renal transplant patients suggests that KIM-1 could be a sensitive and specific biomarker for early diagnosis and prognosis of kidney allograft injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ESRD:

End-stage renal disease

PBMC:

Peripheral blood mononuclear cell

WFG:

Well-functioning graft

AR:

Acute rejection

CAD:

Chronic allograft dysfunction

GD:

Graft dysfunction

ATN:

Acute tubular necrosis

IF/TA:

Interstitial fibrosis and tubular atrophy

DGF:

Delayed graft function

CRE:

Creatinine

GFR:

Glomerular filtration rate

KIM-1:

Kidney injury molecule-1

ROC:

Receiver-operating characteristic

AUC:

Area under the curve

CI:

Confidence interval

References

  1. Hariharan S, et al. Improved graft survival after renal transplantation in the United States, 1988 to 1996. N Engl J Med. 2000;342(9):605–12.

    Article  CAS  PubMed  Google Scholar 

  2. Tonelli M, et al. Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am J Transplant. 2011;11(10):2093–109.

    Article  CAS  PubMed  Google Scholar 

  3. Langone AJ, Chuang P. The management of the failed renal allograft: an enigma with potential consequences. In: Seminars in dialysis. Hoboken: Wiley Online Library; 2005.

  4. Solez K, et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am J Transplant. 2008;8(4):753–60.

    Article  CAS  PubMed  Google Scholar 

  5. Fidler ME, et al. Histologic findings of antibody-mediated rejection in ABO blood-group-incompatible living-donor kidney transplantation. Am J Transplant. 2004;4(1):101–7.

    Article  PubMed  Google Scholar 

  6. Ushigome H, et al. Findings of graft biopsy specimens within 90 days after ABO blood group incompatible living donor kidney transplantation compared with ABO-identical and non-identical transplantation. Clin Transplant. 2010;24:16–211.

    Article  PubMed  Google Scholar 

  7. Toki D, et al. Acute antibody-mediated rejection in living ABO-incompatible kidney transplantation: long-term impact and risk factors. Am J Transplant. 2009;9(3):567–77.

    Article  CAS  PubMed  Google Scholar 

  8. Cruz DN, et al. Early biomarkers of renal injury. Congest Heart Fail. 2010;16:S25–31.

    Article  CAS  PubMed  Google Scholar 

  9. Ichimura T, et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. 1998;273(7):4135–42.

    Article  CAS  PubMed  Google Scholar 

  10. Han WK, et al. Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62(1):237–44.

    Article  CAS  PubMed  Google Scholar 

  11. Bonventre JV. Kidney injury molecule-1 (KIM-1): a specific and sensitive biomarker of kidney injury. Scand J Clin Lab Investig. 2008;68(sup241):78–83.

    Article  CAS  Google Scholar 

  12. Vaidya VS, et al. Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Ren Physiol. 2006;290(2):F517–F529529.

    Article  CAS  Google Scholar 

  13. van Timmeren MM, et al. Tubular kidney injury molecule-1 in protein-overload nephropathy. Am J Physiol Ren Physiol. 2006;291(2):F456–F464464.

    Article  CAS  Google Scholar 

  14. Nakae S, et al. TIM-1 and TIM-3 enhancement of Th2 cytokine production by mast cells. Blood. 2007;110(7):2565–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Umetsu SE, et al. TIM-1 induces T cell activation and inhibits the development of peripheral tolerance. Nat Immunol. 2005;6(5):447.

    Article  CAS  PubMed  Google Scholar 

  16. Monney L, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature. 2002;415(6871):536–41.

    Article  CAS  PubMed  Google Scholar 

  17. Kuchroo VK, et al. The TIM gene family: emerging roles in immunity and disease. Nat Rev Immunol. 2003;3(6):454–63.

    Article  CAS  PubMed  Google Scholar 

  18. Meyers JH, et al. TIM-4 is the ligand for TIM-1, and the TIM-1–TIM-4 interaction regulates T cell proliferation. Nat Immunol. 2005;6(5):455.

    Article  CAS  PubMed  Google Scholar 

  19. Rodriguez-Manzanet R, et al. The costimulatory role of TIM molecules. Immunol Rev. 2009;229(1):259–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van Timmeren MM, et al. Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J Pathol. 2007;212(2):209–17.

    Article  CAS  PubMed  Google Scholar 

  21. Vaidya VS, et al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat Biotechnol. 2010;28(5):478–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vaidya VS, et al. Urinary biomarkers for sensitive and specific detection of acute kidney injury in humans. Clin Transl Sci. 2008;1(3):200–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sabbisetti VS, et al. Novel assays for detection of urinary KIM-1 in mouse models of kidney injury. Toxicol Sci. 2012;131(1):13–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sabbisetti VS, et al. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J Am Soc Nephrol. 2014;25(10):2177–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jin Z-K, et al. Kidney injury molecule-1 and osteopontin: new markers for prediction of early kidney transplant rejection. Mol Immunol. 2013;54(3):457–64.

    Article  CAS  PubMed  Google Scholar 

  26. Dieterle F, et al. Renal biomarker qualification submission: a dialog between the FDA-EMEA and predictive safety testing consortium. Nat Biotechnol. 2010;28(5):455–62.

    Article  CAS  PubMed  Google Scholar 

  27. Food U, Administration D. FDA, European Medicines Agency to consider additional test results when assessing new drug safety: Collaborative effort by FDA and EMEA expected to yield additional safety data. 2008. 2014.

  28. Zhang P, et al. Kidney injury molecule-1 expression in transplant biopsies is a sensitive measure of cell injury. Kidney Int. 2008;73(5):608–14.

    Article  CAS  PubMed  Google Scholar 

  29. Van Timmeren MM, et al. High urinary excretion of kidney injury molecule-1 is an independent predictor of graft loss in renal transplant recipients. Transplantation. 2007;84(12):1625.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Han WK, et al. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol. 2009;4(5):873–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Renesto P, et al. High expression of Tim-3 mRNA in urinary cells from kidney transplant recipients with acute rejection. Am J Transplant. 2007;7(6):1661–5.

    Article  CAS  PubMed  Google Scholar 

  32. Lachenbruch PA, et al. Biomarkers and surrogate endpoints in renal transplantation: present status and considerations for clinical trial design. Am J Transplant. 2004;4(4):451–7.

    Article  PubMed  Google Scholar 

  33. Kaplan B, Meier-Kriesche HU. Poor predictive value of serum creatinine for renal allograft loss. Am J Transplant. 2003;3(12):1560–5.

    Article  CAS  PubMed  Google Scholar 

  34. Kasiske BL, Andany MA, Danielson B. A thirty percent chronic decline in inverse serum creatinine is an excellent predictor of late renal allograft failure. Am J Kidney Dis. 2002;39(4):762–8.

    Article  PubMed  Google Scholar 

  35. Roodnat J, et al. Proteinuria after renal transplantation affects not only graft survival but also patient survival. Transplantation. 2001;72(3):438–44.

    Article  CAS  PubMed  Google Scholar 

  36. Devarajan P. Emerging biomarkers of acute kidney injury. In: Acute kidney injury. Basel: Karger Publishers; 2007. pp. 203–212.

  37. Sorof JM, et al. Histopathological concordance of paired renal allograft biopsy cores: effect on the diagnosis and management of acute rejection. Transplantation. 1995;60(11):1215–9.

    Article  CAS  PubMed  Google Scholar 

  38. Furness PN, Taub N, Convergence of European Renal Transplant Pathology Assessment Procedures. International variation in the interpretation of renal transplant biopsies: report of the CERTPAP Project. Kidney Int. 2001;60(5):1998–2012.

    Article  CAS  PubMed  Google Scholar 

  39. Anglicheau D, Suthanthiran M. Noninvasive prediction of organ graft rejection and outcome using gene expression patterns. Transplantation. 2008;86(2):192.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hubank M, Schatz D. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res. 1994;22(25):5640–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ichimura T, et al. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Investig. 2008;118(5):1657.

    Article  CAS  PubMed  Google Scholar 

  42. Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature. 2000;407(6805):784–8.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Z, Humphreys BD, Bonventre JV. Shedding of the urinary biomarker kidney injury molecule-1 (KIM-1) is regulated by MAP kinases and juxtamembrane region. J Am Soc Nephrol. 2007;18(10):2704–14.

    Article  CAS  PubMed  Google Scholar 

  44. Bailly V, et al. Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. J Biol Chem. 2002;277(42):39739–48.

    Article  CAS  PubMed  Google Scholar 

  45. Ichimura T, et al. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Ren Physiol. 2004;286(3):F552–F56363.

    Article  CAS  Google Scholar 

  46. Han WK, et al. Human kidney injury molecule-1 is a tissue and urinary tumor marker of renal cell carcinoma. J Am Soc Nephrol. 2005;16(4):1126–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Myers BD, et al. Transtubular leakage of glomerular filtrate in human acute renal failure. Am J Physiol Ren Physiol. 1979;237(4):F319–F325325.

    Article  CAS  Google Scholar 

  48. Sutton TA. Alteration of microvascular permeability in acute kidney injury. Microvasc Res. 2009;77(1):4–7.

    Article  CAS  PubMed  Google Scholar 

  49. Sutton TA, Fisher CJ, Molitoris BA. Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int. 2002;62(5):1539–49.

    Article  CAS  PubMed  Google Scholar 

  50. Nogare A, et al. Noninvasive analyses of kidney injury molecule-1 messenger RNA in kidney transplant recipients with graft dysfunction. In: Transplantation proceedings. Amsterdam: Elsevier; 2012.

  51. Shahbaz SK, et al. High expression of TIM-3 and KIM-1 in blood and urine of renal allograft rejection patients. Transpl Immunol. 2017;43:11–20.

    Article  CAS  PubMed  Google Scholar 

  52. Liangos O, et al. Urinary N-acetyl-β-(d)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J Am Soc Nephrol. 2007;18(3):904–12.

    Article  CAS  PubMed  Google Scholar 

  53. Malyszko J, et al. Kidney injury molecule-1 correlates with kidney function in renal allograft recipients. In: Transplantation proceedings. Amsterdam: Elsevier; 2010.

  54. Tu Y, et al. Urinary netrin-1 and KIM-1 as early biomarkers for septic acute kidney injury. Ren Fail. 2014;36(10):1559–633.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study (MSc student thesis) was financially supported by (Grant no: 24286) Tehran University of Medical Sciences, research deputy, Tehran, Iran. The authors thank all staff members of the transplantation ward in Labbafi Nejad Hospital for their excellent assistance providing clinical data and samples from all patients.

Author information

Authors and Affiliations

Authors

Contributions

SKS participated in collecting the samples, performing the experiments and writing the manuscript draft. FP, MN and PA are nephrologists, participated in acquisition of clinical data, interpreted the data with the clinical outcome. MSY contributed in statistical data analysis. MB, FF, and MH participated in sample collection and performed the experiments. AA, leading project manager, participated in designing the study and editing the final.

Corresponding author

Correspondence to Aliakbar Amirzargar.

Ethics declarations

Conflict of interest

The authors confirm no conflict of interest.

Ethical approval

All the procedures performed in studies involving human participants were in accordance with Ethics Committee of Tehran University of medical science at which the studies were conducted (IRB approval number 92033024286).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshavarz Shahbaz, S., Pourrezagholi, F., Nafar, M. et al. Dynamic variation of kidney injury molecule-1 mRNA and protein expression in blood and urine of renal transplant recipients: a cohort study. Clin Exp Nephrol 23, 1235–1249 (2019). https://doi.org/10.1007/s10157-019-01765-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-019-01765-y

Keywords

Navigation