Skip to main content
Log in

Metabolitic profiling of amino acids in paraquat-induced acute kidney injury

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

The herbicide paraquat (1, 1′-dimethyl-4, 4′-bipyridylium dichloride; PQ) is a poison well-known to cause delayed mortality due to acute kidney injuries (AKI). This study examines the changes in serum amino acids (AAs) metabolite profiles as surrogate markers of renal cell metabolism and function after paraquat poisoning.

Methods

To identify the metabolic profiling of free serum AAs and its metabolites, serum from 40 paraquat-poisoned patients with or without AKI is collected. LC-MS/GC-MS is performed to analyze AA molecules. A Cox proportional hazard model was used to assess for incidence of AKI. Receiver operating characteristic (ROC) curve is applied to evaluate AKI occurrence and prognosis.

Results

A total of 102 serum AAs and its metabolites were identified. Compared with non-AKI patients, 37 varied significantly in AKI patients. The univariate Cox proportional hazard model analysis revealed that the estimated PQ amount, plasma PQ concentration, urine PQ concentration, APACHE, SOFA scores and 16 amino acids correlated with the incidence of AKI. Further analyses revealed that 3-methylglutarylcarnitine, 1-methylimidazoleacetate, and urea showed higher cumulative hazard ratios for the occurrence of AKI during follow-up (P < 0.05). The area under the curve (AUC) of 3-methylglutarylcarnitine, 1-methylimidazoleacetate and urea were 0.917, 0.857, 0.872, respectively.

Conclusion

3-methylglutarylcarnitine, 1-methylimidazoleacetate and urea were associated with AKI in patients with paraquat intoxication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gunnell D, Eddleston M. Suicide by intentional ingestion of pesticides: a continuing tragedy in developing countries. Int J Epidemiol. 2003;32(6):902.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Eddleston M, Phillips MR. Self poisoning with pesticides. Bmj. 2004;328(7430):42–4.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rose MS, Smith LL. Tissue uptake of paraquat and diquat. Gen Pharmacol. 1977;8(3):173–6.

    Article  CAS  PubMed  Google Scholar 

  4. Hawksworth GM, Bennett PN, Davies DS. Kinetics of paraquat elimination in the dog. Toxicol Appl Pharmacol. 1981;57(2):139.

    Article  CAS  PubMed  Google Scholar 

  5. Smith LL. Mechanism of paraquat toxicity in lung and its relevance to treatment. Hum Toxicol. 1987;6(1):31–6.

    Article  CAS  PubMed  Google Scholar 

  6. Haley TJ. Review of the toxicology of paraquat (1,1′-dimethyl-4,4′-bipyridinium chloride). Clin Toxicol. 1979;14(1):1–46.

    Article  CAS  PubMed  Google Scholar 

  7. Lin JL, Liu L, Leu ML. Recovery of respiratory function in survivors with paraquat intoxication. Arch Environ Health. 1995;50(6):432–9.

    Article  CAS  PubMed  Google Scholar 

  8. Li LR, Sydenham E, Chaudhary B, Beecher D, You C. Glucocorticoid with cyclophosphamide for paraquat-induced lung fibrosis. Cochrane Database Syst Rev. 2014(8):Cd008084.

  9. Gill N, Nally JV Jr, Fatica RA. Renal failure secondary to acute tubular necrosis: epidemiology, diagnosis, and management. Chest. 2005;128(4):2847–63.

    Article  PubMed  Google Scholar 

  10. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. Jama. 2005;294(7):813–8.

    Article  CAS  PubMed  Google Scholar 

  11. Molck AM, Friis C. The cytotoxic effect of paraquat to isolated renal proximal tubular segments from rabbits. Toxicology. 1997;122(1–2):123–32.

    Article  CAS  PubMed  Google Scholar 

  12. Ishii K, Adachi J, Tomita M, Kurosaka M, Ueno Y. Oxysterols as indices of oxidative stress in man after paraquat ingestion. Free Radic Res. 2002;36(2):163–8.

    Article  CAS  PubMed  Google Scholar 

  13. Senator A, Rachidi W, Lehmann S, Favier A, Benboubetra M. Prion protein protects against DNA damage induced by paraquat in cultured cells. Free Radic Biol Med. 2004;37(8):1224–30.

    Article  CAS  PubMed  Google Scholar 

  14. Van Vleet TR, Schnellmann RG. Toxic nephropathy: environmental chemicals. Semin Nephrol. 2003;23(5):500–8.

    Article  CAS  PubMed  Google Scholar 

  15. Maxvold NJ, Smoyer WE, Custer JR, Bunchman TE. Amino acid loss and nitrogen balance in critically ill children with acute renal failure: a prospective comparison between classic hemofiltration and hemofiltration with dialysis. Crit Care Med. 2000;28(4):1161–5.

    Article  CAS  Google Scholar 

  16. KDIGO. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2(1):1–138.

    Article  Google Scholar 

  17. Fujii T, Uchino S, Takinami M, Bellomo R. Validation of the kidney disease improving global outcomes criteria for AKI and comparison of three criteria in hospitalized patients. Clin J Am Soc Nephrol. 2014;9(5):848–54.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Greene KE, Peters JI. Pathophysiology of acute respiratory failure. Clin Chest Med. 1994;15(1):1–12.

    CAS  PubMed  Google Scholar 

  19. Roussos C, Koutsoukou A. Respiratory failure. Eur Respir J Suppl. 2003;47:3 s–14 s.

    Article  CAS  Google Scholar 

  20. Lin JL, Leu ML, Liu YC, Chen GH. A prospective clinical trial of pulse therapy with glucocorticoid and cyclophosphamide in moderate to severe paraquat-poisoned patients. Am J Respir Crit Care Med. 1999;159(2):357–60.

    Article  CAS  PubMed  Google Scholar 

  21. Hong SY, Gil HW, Yang JO, Lee EY, Na JO, Seo KH, et al. Clinical implications of the ethane in exhaled breath in patients with acute paraquat intoxication. Chest. 2005;128(3):1506–10.

    Article  CAS  PubMed  Google Scholar 

  22. Whitehead RD, Montesano MA, Jayatilaka NK, Buckley B, Winnik B, Needham LL, et al. Method for measurement of the quaternary amine compounds paraquat and diquat in human urine using high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2010;878(27):2548–53.

    Article  CAS  Google Scholar 

  23. Zhou CY, Kang X, Li CB, Li XH, Liu Y, Wang Z, et al. Pneumomediastinum predicts early mortality in acute paraquat poisoning. Clin Toxicol (Phila). 2015;53(6):551–6.

    Article  Google Scholar 

  24. Seymour CW, Yende S, Scott MJ, Pribis J, Mohney RP, Bell LN, et al. Metabolomics in pneumonia and sepsis: an analysis of the GenIMS cohort study. Intensive Care Med. 2013;39(8):1423–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wunnapuk K, Medley GA, Liu X, Grice JE, Jayasinghe S, Gawarammana I, et al. Simple and sensitive liquid chromatography-tandem mass spectrometry methods for quantification of paraquat in plasma and urine: application to experimental and clinical toxicological studies. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879(28):3047–52.

    Article  CAS  PubMed  Google Scholar 

  26. Lawton KA, Berger A, Mitchell M, Milgram KE, Evans AM, Guo L, et al. Analysis of the adult human plasma metabolome. Pharmacogenomics. 2008;9(4):383–97.

    Article  CAS  PubMed  Google Scholar 

  27. Dehaven CD, Evans AM, Dai H, Lawton KA. Organization of GC/MS and LC/MS metabolomics data into chemical libraries. J Cheminform. 2010;2(1):9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cox DR. Regression Models and Life-Tables. J Roy Stat Soc. 1972;34(2):187–220.

    Google Scholar 

  29. Li LR, Sydenham E, Chaudhary B, You C. Glucocorticoid with cyclophosphamide for paraquat-induced lung fibrosis. Cochrane Database Syst Rev. 2014;8(6):-.

    Google Scholar 

  30. Roe CR, Millington DS, Maltby DA. Identification of 3-methylglutarylcarnitine. A new diagnostic metabolite of 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency. J Clin Investig. 1986;77(4):1391.

    Article  CAS  PubMed  Google Scholar 

  31. Schulz H. Beta oxidation of fatty acids. Biochimica Et Biophysica Acta. 1991;1081(2):109–20.

    Article  CAS  PubMed  Google Scholar 

  32. Ahmad S. l-carnitine in dialysis patients. Semin Dial. 2001;14(3):209–17.

    Article  CAS  PubMed  Google Scholar 

  33. Borum PR. Carnitine. Determination of total carnitine using a radioenzymatic assay. J Nutr Biochem. 1990;1(2):111.

    Article  CAS  PubMed  Google Scholar 

  34. Hermann K, Hertenberger B, Ring J. Measurement and characterization of histamine and methylhistamine in human urine under histamine-rich and histamine-poor diets. Int Arch Allergy Immunol. 1993;101(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  35. Johansson AC, Lönnqvist B, Granerus G. The relationship between body size and the urinary excretion of the main histamine metabolite tele-methylimidazoleacetic acid in man. Inflamm Res. 2001;50(2):70–1.

    Google Scholar 

  36. Johansson AC, Lonnqvist B, Granerus G. The relationship between body size and the urinary excretion of the main histamine metabolite tele-methylimidazoleacetic acid in man. Inflamm Res. 2001;50(Suppl 2):70-1.

    Google Scholar 

  37. Madjene LC, Pons M, Danelli L, Claver J, Ali L, Madera-Salcedo IK, et al. Mast cells in renal inflammation and fibrosis: lessons learnt from animal studies. Mol Immunol. 2015;63(1):86–93.

    Article  CAS  PubMed  Google Scholar 

  38. Oka T, Kalesnikoff J, Starkl P, Tsai M, Galli SJ. Evidence questioning cromolyn’s effectiveness and selectivity as a ‘mast cell stabilizer’ in mice. Lab Investig J Tech Methods Pathol. 2012;92(10):1472.

    Article  CAS  Google Scholar 

  39. Madjene LC, Pons M, Danelli L, Claver J, Ali L, Madera-Salcedo IK, et al. Mast cells in renal inflammation and fibrosis: lessons learnt from animal studies. Mol Immunol. 2014.

  40. Oka T, Kalesnikoff J, Starkl P, Tsai M, Galli SJ. Evidence questioning cromolyn’s effectiveness and selectivity as a ‘mast cell stabilizer’ in mice. Lab Invest. 2012;92(10):1472–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moore AE, Johnston WH, Hever A, Peng S, Kujubu DA. Systemic mastocytosis presenting with acute oliguric renal failure: report of a case and review of the literature. Int Urol Nephrol. 2012;44(2):639–42.

    Article  PubMed  Google Scholar 

  42. Talaszka A, Boulanger E, Le Monies de Sagazan H, Le Blan C. Acute kidney failure revealing mastocytosis. Presse Med. 1992;21(19):908–9.

    CAS  PubMed  Google Scholar 

  43. Fenton RA, Knepper MA. Urea and renal function in the 21st century: insights from knockout mice. J Am Soc Nephrol Jasn. 2007;18(3):679–88.

    Article  CAS  PubMed  Google Scholar 

  44. Varela CF, Greloni G, Schreck C, Bratti G, Medina A, Marenchino R, et al. Assessment of fractional excretion of urea for early diagnosis of cardiac surgery associated acute kidney injury. Ren Fail. 2015;37(10):327–31.

    Article  CAS  PubMed  Google Scholar 

  45. Fenton RA, Knepper MA. Urea and renal function in the 21st century: insights from knockout mice. J Am Soc Nephrol. 2007;18(3):679–88.

    Article  CAS  PubMed  Google Scholar 

  46. Ring T. Urea handling in acute renal failure. Kidney Int. 2012;82(10):1137. (Author reply-8)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work received the support of grants from the National Natural Science Foundation of China Nos: 81270136, 81671897 (to A.P.), No: 81500508 (to H.B.), Shanghai Pujiang Program No: 15PJ1406800 (to H.B.), Shanghai international cooperation program No: 16410724200 (to H.B.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai Peng.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, X., Li, X., Wang, Q. et al. Metabolitic profiling of amino acids in paraquat-induced acute kidney injury. Clin Exp Nephrol 23, 474–483 (2019). https://doi.org/10.1007/s10157-019-01702-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-019-01702-z

Keywords

Navigation