Skip to main content

Advertisement

Log in

Clinical impact of abdominal fat distribution measured by 3-D computed tomography volumetry on post-transplant renal function in recipients after living kidney transplantation: a retrospective study

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Excessive visceral fat may decrease renal function because of metabolic derangements. The aim of this study was to evaluate the impact of abdominal fat distribution on renal function of recipients after kidney transplantation using the visceral adipose tissue (VAT)/subcutaneous adipose tissue (SAT) ratio.

Methods

Seventy-nine patients underwent living kidney transplantation from 2009 to 2017. Patients without a correct measurement of VAT and SAT, follow-up of < 6 months, or with kidney transplant rejection or a virus infection were excluded. VAT and SAT were calculated automatically by 3-D volume analyzer software in recipients prior to living kidney transplantation. Our primary aim was to identify abdominal fat distribution measured by CT associated with renal dysfunction (estimate glomerular filtration rate; eGFR < 45) at 6 month post renal transplantation in recipient.

Results

Fifty-eight living kidney recipients were included in this retrospective study: 30 for the high VAT/SAT ratio group; 28 for the VAT/SAT low group. Multiple logistic regression analysis showed the VAT/SAT ratio and pre-donor eGFR were associated with eGFR < 45 ml/min/1.73 m2. An increase in VAT/SAT ratio was associated independently with the incidence of decreased renal function.

Conclusion

This finding indicates that adipose tissue distribution is an important predictor of the outcome of living kidney transplantation in recipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Suthanthiran M, Strom TB. Renal transplantation. N Engl J Med. 1994;331:365–76.

    Article  PubMed  CAS  Google Scholar 

  2. Port FK, Wolfe RA, Mauger EA, Berling DP, Jiang K. Comparison of survival probabilities for dialysis patients vs. cadaveric renal transplant recipients. JAMA. 1993;270:1339–43.

    Article  PubMed  CAS  Google Scholar 

  3. Hart A, Smith JM, Skeans MA, Gustafson SK, Stewart DE, Cherikh WS, et al. 2014 annual report of the U.S. Organ Procurement and Transplantation Network and the Scientific Registry of Transplant Recipients: kidney. Am J Transplant. 2016;16:11–46.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang JH, Skeans MA, Israni AK. Current status of kidney transplant outcomes: dying to survive. Adv Chronic Kidney Dis. 2016;23:281–6.

    Article  PubMed  Google Scholar 

  5. Gabriel MD. Handbook of kidney transplantation. 6th ed. Alphen aan den Rijn: Wolters Kluwer; 2017. pp. 306–8.

    Google Scholar 

  6. Hricik DE. Metabolic syndrome in kidney transplantation: management of risk factors. Clin J Am Soc Nephrol. 2011;6:1781–5.

    Article  PubMed  Google Scholar 

  7. LaGuardia H, Zhang R. Obesity and metabolic syndrome in kidney transplantation. Curr Hypertens Rep. 2013;15:215–23.

    Article  PubMed  CAS  Google Scholar 

  8. Alman AC, Smith SR, Eckel RH, Hokanson JE, Burkhardt BR, Sudini PR, et al. The ratio of pericardial to subcutaneous adipose tissues is associated with insulin resistance. Obesity. 2017;25:1284–91.

    Article  PubMed  CAS  Google Scholar 

  9. Shulman GI. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med. 2014;371:1131–41.

    Article  PubMed  CAS  Google Scholar 

  10. Rosenquist KJ, Pedley A, Massaro JM, Therkelsen KE, Murabito JM, Hoffmann U, et al. Visceral and subcutaneous fat quality and cardiometabolic risk. J Am Coll Cardiol Imaging. 2013;6:762–71.

    Article  Google Scholar 

  11. Abraham TM, Pedley A, Massaro JM, Hoffmann U, Fox CS. Association between visceral and subcutaneous adipose depots and incident cardiovascular disease risk factors. Circulation. 2015;132:1639–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. von Düring ME, Jenssen T, Bollerslev J, Asberg A, Godang K, Hartmann A. Visceral fat is strongly associated with post-transplant diabetes mellitus and glucose metabolism 1 year after kidney transplantation. Clin Transplant. 2017;31:e12869.

    Article  CAS  Google Scholar 

  13. Ladeiras-Lopes R, Sampaio F, Bettencourt N, Fontes-Carvalho R, Ferreira N, Leite-Moreira A, Gama V. The ratio between visceral and subcutaneous abdominal fat assessed by computed tomography is an independent predictor of mortality and cardiac events. Rev Esp Cardiol. 2017;70:331–7.

    Article  PubMed  Google Scholar 

  14. Lee HH, Kang SK, Yoon YE, Huh KH, Kim MS, Kim SI. Impact of the ratio of visceral to subcutaneous adipose tissue in donor nephrectomy patients. Transplant Proc. 2017;49:940–3.

    Article  PubMed  CAS  Google Scholar 

  15. Amato MC, Giordano C, Pitrone M, Galluzzo A. Cut-off points of the Visceral Adiposity Index (VAI) identifying a visceral adipose dysfunction associated with cardiometabolic risk in a Caucasian Sicilian population. Lipids Health Dis. 2011;10:183.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hiuge-Shimizu A, Kishida K, Funahashi T, Ishizaka Y, Oka R, Okada M, et al. Absolute value of visceral fat area measured on computed tomography scans and obesity-related cardiovascular risk factors in large-scale Japanese general population (The VACATION-J study). Ann Med. 2012;44:82–92.

    Article  PubMed  Google Scholar 

  17. Kanda Y. Investigation of the freely available easy-to-use software‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

    Article  PubMed  CAS  Google Scholar 

  18. Miyazaki Y, DeFronzo RA. Visceral fat dominant distribution in male type 2 diabetic patients is closely related to hepatic insulin resistance, irrespective of body type. Cardiovasc Diabetol. 2009;8:44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. He H, Ni Y, Chen J, Zhao Z, Zhong J, Liu D, et al. Sex difference in cardiometabolic risk profile and adiponectin expression in subjects with visceral fat obesity. Transl Res. 2010;155:71–7.

    Article  PubMed  CAS  Google Scholar 

  20. Kaess BM, Pedley A, Massaro JM, Murabito J, Hoffmann U, Fox CS. The ratio of visceral to subcutaneous fat, a metric of body fat distribution, is a unique correlate of cardiometabolic risk. Diabetologia. 2012;55:2622–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Mitsui Y, Sadahira T, Araki M, Wada K, Tanimoto R, Ariyoshi Y, et al. The assessment of renal cortex and parenchymal volume using automated CT volumetry for predicting renal function after donor nephrectomy. Clin Exp Nephrol. 2018;22:453–8.

    Article  PubMed  CAS  Google Scholar 

  22. Lentine KL, Delos Santos R, Axelrod D, Schnitzler MA, Brennan DC, Tuttle-Newhall JE. Obesity and kidney transplant candidates: how big is too big for transplantation? Am J Nephrol. 2012;36:575–86.

    Article  PubMed  CAS  Google Scholar 

  23. Minh-Ha T, Clarence EF, Kamyar KZ, Hirohito I. Kidney transplantation in obese patients. World J Transplant. 2016;6:135.

    Article  Google Scholar 

  24. Bertram LK, Charles BC, Sundaram H, Hricik DE, Kerman RH, Roth D, et al. The evaluation of renal transplant candidates: clinical practice guidelines. Am J Transplant. 2001;2:3–95.

    Google Scholar 

  25. Montano-Loza AJ, Mazurak VC, Ebadi M, Meza-Junco J, Sawyer MB, Baracos VE, et al. Visceral adiposity increases risk for hepatocellular carcinoma in male patients with cirrhosis and recurrence after liver transplant. Hepatology. 2018;67:914–23.

    Article  PubMed  Google Scholar 

  26. Jabłonowska-Lietz B, Wrzosek M, Włodarczyk M, Nowicka G. New indexes of body fat distribution, Visceral Adiposity Index, Body Adiposity Index, waist-to-height ratio, and metabolic disturbances in the obese. Kardiol Pol. 2017;75:1185–91.

    Article  PubMed  Google Scholar 

  27. Raz I, Eldor R, Cernea S, Shafrir E. Diabetes: insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage. Diabetes Metab Res Rev. 2005;21:3–14.

    Article  PubMed  CAS  Google Scholar 

  28. Bayer ND, Cochetti PT, Anil Kumar MS, Teal V, Huan Y, Doria C, et al. Association of metabolic syndrome with development of new-onset diabetes after transplantation. Transplantation. 2010;90:861–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. O’Hare AM, Choi AI, Bertenthal D, Bacchetti P, Garg AX, Kaufman JS, et al. Age affects outcomes in chronic kidney disease. J Am Soc Nephrol. 2007;18:2758–65.

    Article  PubMed  Google Scholar 

  30. Chen KW, Wu MW, Chen Z, Tai BC, Goh YS, Lata R, et al. Compensatory hypertrophy after living donor nephrectomy. Transplant Proc. 2016;48:716–9.

    Article  PubMed  CAS  Google Scholar 

  31. Pantik C, Cho YE, Hathaway D, Tolley E, Cashion A. Characterization of body composition and fat mass distribution 1 year after kidney transplantation. Prog Transplant. 2017;27:10–5.

    Article  PubMed  Google Scholar 

  32. Kidney Disease. Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;9(Suppl 3):S1.

    Google Scholar 

Download references

Acknowledgements

The authors thank the clinical laboratory technicians of Okayama University Hospital for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Sadahira.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Ethical approval

This clinical study was approved by the Okayama University Institutional Review Board prior to study initiation (Registration No. 951).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitsui, Y., Sadahira, T., Araki, M. et al. Clinical impact of abdominal fat distribution measured by 3-D computed tomography volumetry on post-transplant renal function in recipients after living kidney transplantation: a retrospective study. Clin Exp Nephrol 23, 415–424 (2019). https://doi.org/10.1007/s10157-018-1643-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-018-1643-6

Keywords

Navigation