Skip to main content

Advertisement

Log in

Differences in peritoneal solute transport rates in peritoneal dialysis

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Ultrafiltration failure associated with peritoneal membrane dysfunction is one of the main complications for patients on long-term peritoneal dialysis (PD). The dialysate-to-plasma concentration ratio (D/P) of creatinine is widely used to assess peritoneal membrane function. However, other small-sized solutes have not been studied in detail as potential indicators of peritoneal permeability.

Methods

We studied the D/Ps of small, middle-sized and large molecules in peritoneal equilibration tests in 50 PD patients. We applied metabolomic analysis of comprehensive small molecular metabolites using capillary electrophoresis time-of-flight mass spectrometry.

Results

D/Ps of middle-sized and large molecules correlated positively with D/P creatinine. Most D/Ps of small molecules correlated positively with D/P creatinine. Among 38 small molecules contained in the dialysate, urea, citrulline and choline showed significantly lower ability to permeate than creatinine. In the relationship between D/Ps of creatinine and small molecules, regression coefficients of three molecules were less than 0.3, representing no correlation to D/P creatinine. Five molecules showed negative regression coefficients. Among these molecules, hippurate and 3-indoxyl sulfate showed relatively high teinpro binding rates, which may affect permeability. Serum concentrations of two molecules were higher in the Low Kt/V group, mainly due to high protein binding rates.

Conclusions

D/Ps of some molecules did not correlate with D/P creatinine. Factors other than molecular weight, such as charge and protein binding rate, are involved in peritoneal transport rates. Metabolomic analysis appears useful to analyze small molecular uremic toxins, which could accumulate in PD patients, and the status of peritoneal membrane transport for each molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Churchill DN, Thorpe KE, Nolph KD, Keshaviah PR, Oreopoulos DG, Page D. Increased peritoneal membrane transport is associated with decreased patient and technique survival for continuous peritoneal dialysis patients. The Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol. 1998;9:1285–92.

    PubMed  CAS  Google Scholar 

  2. Brimble KS, Walker M, Margetts PJ, Kundhal KK, Rabbat CG. Meta-analysis: peritoneal membrane transport, mortality, and technique failure in peritoneal dialysis. J Am Soc Nephrol. 2006;17:2591–8.

    Article  PubMed  Google Scholar 

  3. Flessner MF. The transport barrier in intraperitoneal therapy. Am J Physiol Renal Physiol. 2005;288:F433–42.

    Article  CAS  Google Scholar 

  4. Rippe B, Haraldsson B. Fluid and protein fluxes across small and large pores in the microvasculature. Application of two-pore equations. Acta Physiol Scand. 1987;131:411–28.

    Article  PubMed  CAS  Google Scholar 

  5. Rippe B, Venturoli D, Simonsen O, de Arteaga J. Fluid and electrolyte transport across the peritoneal membrane during CAPD according to the three-pore model. Perit Dial Int. 2004;24:10–27.

    PubMed  CAS  Google Scholar 

  6. Venturoli D, Rippe B. Transport asymmetry in peritoneal dialysis: application of a serial heteroporous peritoneal membrane model. Am J Physiol Renal Physiol. 2001;280:F599–606.

    Article  PubMed  CAS  Google Scholar 

  7. Mamas M, Dunn WB, Neyses L, Goodacre R. The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Arch Toxicol. 2011;85:5–17.

    Article  PubMed  CAS  Google Scholar 

  8. Hirayama A, Nakashima E, Sugimoto M, Akiyama S, Sato W, Maruyama S, et al. Metabolic profiling reveals new serum biomarkers for differentiating diabetic nephropathy. Anal Bioanal Chem. 2012;404:3101–9.

    Article  PubMed  CAS  Google Scholar 

  9. Hirayama A, Tomita M, Soga T. Sheathless capillary electrophoresis-mass spectrometry with a high-sensitivity porous sprayer for cationic metabolome analysis. Analyst. 2012;137:5026–33.

    Article  PubMed  CAS  Google Scholar 

  10. Sugimoto M, Kikuchi S, Arita M, Soga T, Nishioka T, Tomita M. Large-scale prediction of cationic metabolite identity and migration time in capillary electrophoresis mass spectrometry using artificial neural networks. Anal Chem. 2005;77:78–84.

    Article  PubMed  CAS  Google Scholar 

  11. Banker MJ, Clark TH, Williams JA. Development and validation of a 96-well equilibrium dialysis apparatus for measuring plasma protein binding. J Pharm Sci. 2003;92:967–74.

    Article  PubMed  CAS  Google Scholar 

  12. Kariv I, Cao H, Oldenburg KR. Development of a high throughput equilibrium dialysis method. J Pharm Sci. 2001;90:580–7.

    Article  PubMed  CAS  Google Scholar 

  13. Krediet RT, Boeschoten EW, Struijk DG, Arisz L. Differences in the peritoneal transport of water, solutes and proteins between dialysis with two- and with three-litre exchanges. Nephrol Dial Transpl. 1988;3:198–204.

    CAS  Google Scholar 

  14. Bridges CR, Myers BD, Brenner BM, Deen WM. Glomerular charge alterations in human minimal change nephropathy. Kidney Int. 1982;22:677–84.

    Article  PubMed  CAS  Google Scholar 

  15. Rippe B, Davies S. Permeability of peritoneal and glomerular capillaries: what are the differences according to pore theory? Perit Dial Int. 2011;31:249–58.

    Article  PubMed  Google Scholar 

  16. Kuhlmann MK. Phosphate elimination in modalities of hemodialysis and peritoneal dialysis. Blood Purif. 2010;29:137–44.

    Article  PubMed  CAS  Google Scholar 

  17. Zehnder C, Gutzwiller JP, Renggli K. Hemodiafiltration–a new treatment option for hyperphosphatemia in hemodialysis patients. Clin Nephrol. 1999;52:152–9.

    PubMed  CAS  Google Scholar 

  18. Duranton F, Lundin U, Gayrard N, Mischak H, Aparicio M, Mourad G, et al. Plasma and urinary amino acid metabolomic profiling in patients with different levels of kidney function. Clin J Am Soc Nephrol. 2014;9:37–45.

    Article  PubMed  CAS  Google Scholar 

  19. Chuang CK, Lin SP, Chen HH, Chen YC, Wang TJ, Shieh WH, et al. Plasma free amino acids and their metabolites in Taiwanese patients on hemodialysis and continuous ambulatory peritoneal dialysis. Clin Chim Acta. 2006; 364:209–16.

    Article  PubMed  CAS  Google Scholar 

  20. Ilcol YO, Donmez O, Yavuz M, Dilek K, Yurtkuran M, Ulus IH. Free choline and phospholipid-bound choline concentrations in serum and dialysate during peritoneal dialysis in children and adults. Clin Biochem. 2002;35:307–13.

    Article  PubMed  CAS  Google Scholar 

  21. Hjelle JT, Welch MH, Pavlina TM, Webb LE, Mockler DF, Miller MA, et al. Choline levels in human peritoneal dialysate. Adv Perit Dial. 1993; 9:299–302 (Conference on Peritoneal Dialysis).

    PubMed  CAS  Google Scholar 

  22. Rennick B, Acara M, Hysert P, Mookerjee B. Choline loss during hemodialysis: homeostatic control of plasma choline concentrations. Kidney Int. 1976;10:329–35.

    Article  PubMed  CAS  Google Scholar 

  23. Yung S, Chan TM. Glycosaminoglycans and proteoglycans: overlooked entities? Perit Dial Int. 2007;27(Suppl 2):104–9.

    Google Scholar 

  24. Sekine T, Miyazaki H, Endou H. Molecular physiology of renal organic anion transporters. Am J Physiol Renal Physiol. 2006;290:F251–61.

    Article  CAS  Google Scholar 

  25. Masereeuw R, Mutsaers HA, Toyohara T, Abe T, Jhawar S, Sweet DH, et al. The kidney and uremic toxin removal: glomerulus or tubule? Seminars in nephrology. 2014; 34:191–208.

  26. Wilkie M. Introduction to point-counterpoint: mechanisms of glomerular filtration: pores versus an electrical field. Perit Dial Int. 2015;35:4.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hung SC, Kuo KL, Wu CC, Tarng DC. Indoxyl sulfate: a novel cardiovascular risk factor in chronic kidney disease. J Am Heart Assoc. 2017. https://doi.org/10.1161/JAHA.116.005022.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lekawanvijit S, Kompa AR, Wang BH, Kelly DJ, Krum H. Cardiorenal syndrome: the emerging role of protein-bound uremic toxins. Circ Res. 2012;111:1470–83.

    Article  PubMed  CAS  Google Scholar 

  29. Ito S, Yoshida M. Protein-bound uremic toxins: new culprits of cardiovascular events in chronic kidney disease patients. Toxins (Basel). 2014;6:665–78.

    Article  CAS  Google Scholar 

  30. Zager RA, Johannes GA, Sharma HM. Organic anion infusions exacerbate experimental acute renal failure. Am J Physiol. 1983;244:F48–55.

    PubMed  CAS  Google Scholar 

  31. Satoh M, Hayashi H, Watanabe M, Ueda K, Yamato H, Yoshioka T, et al. Uremic toxins overload accelerates renal damage in a rat model of chronic renal failure. Nephron Exp Nephrol. 2003;95:e111-8.

    Article  PubMed  CAS  Google Scholar 

  32. Maiorca R, Brunori G, Zubani R, Cancarini GC, Manili L, Camerini C, et al. Predictive value of dialysis adequacy and nutritional indices for mortality and morbidity in CAPD and HD patients. A longitudinal study. Nephrol Dial Transpl. 1995;10:2295–305.

    Article  CAS  Google Scholar 

  33. Bargman JM, Thorpe KE, Churchill DN. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J Am Soc Nephrol. 2001;12:2158–62.

    PubMed  CAS  Google Scholar 

  34. Canada-USA (CANUSA) Peritoneal Dialysis Study Group. Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. J Am Soc Nephrol. 1996;7:198–207.

    Google Scholar 

  35. del Peso G, Fernandez-Reyes MJ, Hevia C, Bajo MA, Castro MJ, Cirugeda A, et al. Factors influencing peritoneal transport parameters during the first year on peritoneal dialysis: peritonitis is the main factor. Nephrol Dial Transpl. 2005;20:1201–6.

    Article  CAS  Google Scholar 

  36. Mizutani M, Ito Y, Mizuno M, Nishimura H, Suzuki Y, Hattori R, et al. Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate. Am J Physiol Renal Physiol. 2010;298:F721-33.

    Article  PubMed  CAS  Google Scholar 

  37. Lambie M, Chess J, Donovan KL, Kim YL, Do JY, Lee HB, et al. Independent effects of systemic and peritoneal inflammation on peritoneal dialysis survival. J Am Soc Nephrol. 2013;24:2071–80.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, et al. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol. 2002;13:470–9.

    PubMed  Google Scholar 

  39. Gotloib L, Shustak A, Jaichenko J. Loss of mesothelial electronegative fixed charges during murine septic peritonitis. Nephron. 1989;51:77–83.

    Article  PubMed  CAS  Google Scholar 

  40. Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflugers Archiv. 2000;440:653–66.

    Article  PubMed  CAS  Google Scholar 

  41. Tawada M, Ito Y, Hamada C, Honda K, Mizuno M, Suzuki Y, et al. Vascular endothelial cell injury is an important factor in the development of encapsulating peritoneal sclerosis in long-term peritoneal dialysis patients. PLoS One. 2016;11:e0154644.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiko Ito.

Ethics declarations

Conflict of interest

The authors have declared that no conflicts of interest exist.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 78 KB)

Supplementary material 2 (PPTX 83 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asano, M., Ishii, T., Hirayama, A. et al. Differences in peritoneal solute transport rates in peritoneal dialysis. Clin Exp Nephrol 23, 122–134 (2019). https://doi.org/10.1007/s10157-018-1611-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-018-1611-1

Keywords

Navigation