Clinical and Experimental Nephrology

, Volume 22, Issue 3, pp 517–528 | Cite as

Effect of Npt2b deletion on intestinal and renal inorganic phosphate (Pi) handling

  • Kayo Ikuta
  • Hiroko Segawa
  • Shohei Sasaki
  • Ai Hanazaki
  • Toru Fujii
  • Aoi Kushi
  • Yuka Kawabata
  • Ruri Kirino
  • Sumire Sasaki
  • Miwa Noguchi
  • Ichiro Kaneko
  • Sawako Tatsumi
  • Otoya Ueda
  • Naoko A. Wada
  • Hiromi Tateishi
  • Mami Kakefuda
  • Yosuke Kawase
  • Shuichi Ohtomo
  • Yasuhiro Ichida
  • Akira Maeda
  • Kou-ichi Jishage
  • Naoshi Horiba
  • Ken-ichi Miyamoto
Original article
  • 394 Downloads

Abstract

Background

Hyperphosphatemia is common in chronic kidney disease and is associated with morbidity and mortality. The intestinal Na+-dependent phosphate transporter Npt2b is thought to be an important molecular target for the prevention of hyperphosphatemia. The role of Npt2b in the net absorption of inorganic phosphate (Pi), however, is controversial.

Methods

In the present study, we made tamoxifen-inducible Npt2b conditional knockout (CKO) mice to analyze systemic Pi metabolism, including intestinal Pi absorption.

Results

Although the Na+-dependent Pi transport in brush-border membrane vesicle uptake levels was significantly decreased in the distal intestine of Npt2b CKO mice compared with control mice, plasma Pi and fecal Pi excretion levels were not significantly different. Data obtained using the intestinal loop technique showed that Pi uptake in Npt2b CKO mice was not affected at a Pi concentration of 4 mM, which is considered the typical luminal Pi concentration after meals in mice. Claudin, which may be involved in paracellular pathways, as well as claudin-2, 12, and 15 protein levels were significantly decreased in the Npt2b CKO mice. Thus, Npt2b deficiency did not affect Pi absorption within the range of Pi concentrations that normally occurs after meals.

Conclusion

These findings indicate that abnormal Pi metabolism may also be involved in tight junction molecules such as Cldns that are affected by Npt2b deficiency.

Keywords

Intestine Transcellular transport–paracellular transport 

Notes

Acknowledgements

This work was supported by Grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan (26461254 to H.S. and 26293204 to K.M.), and The Salt Science Research Foundation (Japan). We thank Ms. Y. Oikawa, Ms. C. Honda, Mr. T. Tachibe, Ms. C. Goto, Mr. K. Matsumoto, Mr. K. Sato, Mr. M. Morita, and Ms. S. Uchida for skillful cooperation in establishment of NaPi2b CKO mouse line. Furthermore, we are grateful to Drs. Sachiko Tsukita and Tamura Atsushi (Osaka University) for scientific discussion.

Compliance with ethical standards

Conflict of interest

KI, HS, Shohei S, AH, TF, AK, YK, RK, SS, MN, IK, ST, and KM have declared that no conflict of interest exists. OU, NW, SO, YI, AM, KJ, and NH are employees of Chugai Pharmaceutical Co., Ltd. HT, MK, YK, and KJ are Chugai Research Institute for Medical Science, Inc.

Human and animal rights

Mice were handled in accordance with the Guidelines for Animal Experimentation of Tokushima University School of Medicine and with the Guidelines for the Care and Use of Laboratory Animals at Chugai Pharmaceuticals. This article does not contain any studies with human participants.

Supplementary material

10157_2017_1497_MOESM1_ESM.docx (95 kb)
Supplementary material 1 (DOCX 94 kb)
10157_2017_1497_MOESM2_ESM.zip (1.1 mb)
Supplementary material 2 (ZIP 1136 kb)

References

  1. 1.
    Block GA, Kilpatrick RD, Lowe KA, Wang W, Danese MD. Ckd-mineral and bone disorder and risk of death and cardiovascular hospitalization in patients on hemodialysis. Clin J Am Soc Nephrol. 2013;8:2132–40.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cannata-Andia JB, Martin KJ. The challenge of controlling phosphorus in chronic kidney disease. Nephrol Dial Transplant. 2016;31:541–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Vervloet MG, Sezer S, Massy ZA, Johansson L, Cozzolino M, Fouque D, Disease-Mineral E-EWGoCK, Bone D, the European Renal Nutrition Working G. The role of phosphate in kidney disease. Nat Rev Nephrol. 2017;13:27–38.CrossRefPubMedGoogle Scholar
  4. 4.
    Wagner CA, Hernando N, Forster IC, Biber J. The slc34 family of sodium-dependent phosphate transporters. Pflugers Archiv. 2014;466:139–53.CrossRefPubMedGoogle Scholar
  5. 5.
    Ohi A, Hanabusa E, Ueda O, Segawa H, Horiba N, Kaneko I, Kuwahara S, Mukai T, Sasaki S, Tominaga R, Furutani J, Aranami F, Ohtomo S, Oikawa Y, Kawase Y, Wada NA, Tachibe T, Kakefuda M, Tateishi H, Matsumoto K, Tatsumi S, Kido S, Fukushima N, Jishage K, Miyamoto K. Inorganic phosphate homeostasis in sodium-dependent phosphate cotransporter npt2b(+)/(−) mice. Am J Physiol Renal Physiol. 2011;301:F1105–13.CrossRefPubMedGoogle Scholar
  6. 6.
    Sabbagh Y, Giral H, Caldas Y, Levi M, Schiavi SC. Intestinal phosphate transport. Adv Chronic Kidney Dis. 2011;18:85–90.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sabbagh Y, O’Brien SP, Song W, Boulanger JH, Stockmann A, Arbeeny C, Schiavi SC. Intestinal npt2b plays a major role in phosphate absorption and homeostasis. J Am Soc Nephrol. 2009;20:2348–58.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Labonte ED, Carreras CW, Leadbetter MR, Kozuka K, Kohler J, Koo-McCoy S, He L, Dy E, Black D, Zhong Z, Langsetmo I, Spencer AG, Bell N, Deshpande D, Navre M, Lewis JG, Jacobs JW, Charmot D. Gastrointestinal inhibition of sodium-hydrogen exchanger 3 reduces phosphorus absorption and protects against vascular calcification in ckd. J Am Soc Nephrol. 2015;26:1138–49.CrossRefPubMedGoogle Scholar
  9. 9.
    Pan W, Borovac J, Spicer Z, Hoenderop JG, Bindels RJ, Shull GE, Doschak MR, Cordat E, Alexander RT. The epithelial sodium/proton exchanger, nhe3, is necessary for renal and intestinal calcium (re)absorption. Am J Physiol Renal Physiol. 2012;302:F943–56.CrossRefPubMedGoogle Scholar
  10. 10.
    Osoegawa K, Tateno M, Woon PY, Frengen E, Mammoser AG, Catanese JJ, Hayashizaki Y, de Jong PJ. Bacterial artificial chromosome libraries for mouse sequencing and functional analysis. Genome Res. 2000;10:116–28.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhang Y, Buchholz F, Muyrers JP, Stewart AF. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet. 1998;20:123–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang Y, Muyrers JP, Testa G, Stewart AF. DNA cloning by homologous recombination in Escherichia coli. Nat Biotechnol. 2000;18:1314–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Tominaga T, Abe H, Ueda O, Goto C, Nakahara K, Murakami T, Matsubara T, Mima A, Nagai K, Araoka T, Kishi S, Fukushima N, Jishage K, Doi T. Activation of bone morphogenetic protein 4 signaling leads to glomerulosclerosis that mimics diabetic nephropathy. J Biol Chem. 2011;286:20109–16.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Silva IV, Cebotaru V, Wang H, Wang XT, Wang SS, Guo G, Devuyst O, Thakker RV, Guggino WB, Guggino SE. The clc-5 knockout mouse model of dent’s disease has renal hypercalciuria and increased bone turnover. J Bone Miner Res. 2003;18:615–23.CrossRefPubMedGoogle Scholar
  15. 15.
    Segawa H, Onitsuka A, Kuwahata M, Hanabusa E, Furutani J, Kaneko I, Tomoe Y, Aranami F, Matsumoto N, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K. Type iic sodium-dependent phosphate transporter regulates calcium metabolism. J Am Soc Nephrol. 2009;20:104–13.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yoon JY, Woo SI, Kim H, Sun YH, Hahn YS. Fractional exhaled nitric oxide and forced expiratory flow between 25% and 75% of vital capacity in children with controlled asthma. Korean J Pediatrics. 2012;55:330–6.CrossRefGoogle Scholar
  17. 17.
    Marks J, Lee GJ, Nadaraja SP, Debnam ES, Unwin RJ. Experimental and regional variations in Na+-dependent and Na+-independent phosphate transport along the rat small intestine and colon. Physiol Reports. 2015;3.Google Scholar
  18. 18.
    Masaoka Y, Tanaka Y, Kataoka M, Sakuma S, Yamashita S. Site of drug absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur J Pharm Sci. 2006;29:240–50.CrossRefPubMedGoogle Scholar
  19. 19.
    Tanaka Y, Goto T, Kataoka M, Sakuma S, Yamashita S. Impact of luminal fluid volume on the drug absorption after oral administration: analysis based on in vivo drug concentration-time profile in the gastrointestinal tract. J Pharm Sci. 2015;104:3120–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Furutani J, Segawa H, Aranami F, Kuwahara S, Sugano M, Bannai K, Yamato H, Ito M, Miyamoto K. Dietary inorganic phosphorus regulates the intestinal peptide transporter pept1. J Renal Nutr. 2013;23:e11–20.CrossRefGoogle Scholar
  21. 21.
    Thorens B, Sarkar HK, Kaback HR, Lodish HF. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells. Cell. 1988;55:281–90.CrossRefPubMedGoogle Scholar
  22. 22.
    Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J. Characterization of a murine type ii sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci USA. 1998;95:14564–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Marks J, Debnam ES, Unwin RJ. The role of the gastrointestinal tract in phosphate homeostasis in health and chronic kidney disease. Curr Opin Nephrol Hypertens. 2013;22:481–7.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Segawa H, Shiozaki Y, Kaneko I, Miyamoto K. The role of sodium-dependent phosphate transporter in phosphate homeostasis. J Nutr Sci Vitaminol. 2015;61(Suppl):S119–21.CrossRefPubMedGoogle Scholar
  25. 25.
    Andrade L, Reboucas NA, Seguro AC. Down-regulation of na + transporters and aqp2 is responsible for acyclovir-induced polyuria and hypophosphatemia. Kidney Int. 2004;65:175–83.CrossRefPubMedGoogle Scholar
  26. 26.
    Procino G, Carmosino M, Tamma G, Gouraud S, Laera A, Riccardi D, Svelto M, Valenti G. Extracellular calcium antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells. Kidney Int. 2004;66:2245–55.CrossRefPubMedGoogle Scholar
  27. 27.
    Forster IC, Virkki L, Bossi E, Murer H, Biber J. Electrogenic kinetics of a mammalian intestinal type iib na(+)/p(i) cotransporter. J Membr Biol. 2006;212:177–90.CrossRefPubMedGoogle Scholar
  28. 28.
    Mc HG, Parsons DS. The absorption of inorganic phosphate from the small intestine of the rat. Q J Exp Physiol Cognate Med Sci. 1956;41:398–412.CrossRefGoogle Scholar
  29. 29.
    Breves G, Schroder B. Comparative aspects of gastrointestinal phosphorus metabolism. Nutr Res Rev. 1991;4:125–40.CrossRefPubMedGoogle Scholar
  30. 30.
    Barmeyer C, Schulzke JD, Fromm M. Claudin-related intestinal diseases. Semin Cell Dev Biol. 2015;42:30–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Krug SM, Schulzke JD, Fromm M. Tight junction, selective permeability, and related diseases. Semin Cell Dev Biol. 2014;36:166–76.CrossRefPubMedGoogle Scholar
  32. 32.
    Lu Z, Ding L, Lu Q, Chen YH. Claudins in intestines: distribution and functional significance in health and diseases. Tissue Barriers. 2013;1:e24978.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gunzel D, Yu AS. Claudins and the modulation of tight junction permeability. Physiol Rev. 2013;93:525–69.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Amasheh S, Milatz S, Krug SM, Bergs M, Amasheh M, Schulzke JD, Fromm M. Na+ absorption defends from paracellular back-leakage by claudin-8 upregulation. Biochem Biophys Res Commun. 2009;378:45–50.CrossRefPubMedGoogle Scholar
  35. 35.
    Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M, Uchiyama Y, Yamamoto Y, Wada T, Kojima T, Yokozaki H, Yamashita T, Kato S, Sawada N, Chiba H. Tight junction proteins claudin-2 and -12 are critical for vitamin d-dependent Ca2+ absorption between enterocytes. Mol Biol Cell. 2008;19:1912–21.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wada M, Tamura A, Takahashi N, Tsukita S. Loss of claudins 2 and 15 from mice causes defects in paracellular Na+ flow and nutrient transport in gut and leads to death from malnutrition. Gastroenterology. 2013;144:369–80.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Society of Nephrology 2017

Authors and Affiliations

  • Kayo Ikuta
    • 1
  • Hiroko Segawa
    • 1
  • Shohei Sasaki
    • 1
  • Ai Hanazaki
    • 1
  • Toru Fujii
    • 1
  • Aoi Kushi
    • 1
  • Yuka Kawabata
    • 1
  • Ruri Kirino
    • 1
  • Sumire Sasaki
    • 1
  • Miwa Noguchi
    • 1
  • Ichiro Kaneko
    • 1
  • Sawako Tatsumi
    • 1
  • Otoya Ueda
    • 2
  • Naoko A. Wada
    • 2
  • Hiromi Tateishi
    • 3
  • Mami Kakefuda
    • 3
  • Yosuke Kawase
    • 3
  • Shuichi Ohtomo
    • 2
  • Yasuhiro Ichida
    • 2
  • Akira Maeda
    • 2
  • Kou-ichi Jishage
    • 2
    • 3
  • Naoshi Horiba
    • 2
  • Ken-ichi Miyamoto
    • 1
  1. 1.Department of Molecular Nutrition, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
  2. 2.Fuji Gotemba Research Labs., Research DivisionChugai Pharmaceutical Co., Ltd.GotembaJapan
  3. 3.Chugai Research Institute for Medical Science, Inc.GotembaJapan

Personalised recommendations