Clinical and Experimental Nephrology

, Volume 22, Issue 3, pp 653–660 | Cite as

Targeted exome sequencing in anti-factor H antibody negative HUS reveals multiple variations

  • R. W. Thergaonkar
  • Ankita Narang
  • Bahadur Singh Gurjar
  • Pradeep Tiwari
  • Mamta Puraswani
  • Himanshi Saini
  • Aditi Sinha
  • Binuja Varma
  • Mitali Mukerji
  • Pankaj Hari
  • Arvind Bagga
Original article

Abstract

Background

Genetic susceptibility to atypical hemolytic uremic syndrome (aHUS) may lie within genes regulating or activating the alternate complement and related pathways converging on endothelial cell activation.

Methods

We tested 32 Indian patients of aHUS negative for antibodies to complement factor H for genetic variations in a panel of 15 genes, i.e., CFH, CFHR1-5, CFI, CFB, C3, CD46, MASP2, DGKE, ADAMTS13, THBD and PLG using next-generation DNA sequencing and for copy number variation in CFHR1-3.

Results

Despite absence of a public database of exome variations in the Indian population and limited functional studies, we could establish a genetic diagnosis in 6 (18.8%) patients using a stringent scheme of prioritization. One patient carried a likely pathogenic variation. The number of patients carrying possibly pathogenic variation was as follows: 1 variation: 5 patients, 2 variations: 9 patients, 3 variations: 5 patients, 4 variations: 9 patients, 5 variations: 2 patients and 6 variations: 2 patients. Homozygous deletion of CFHR1-3 was present in five patients; none of these carried a diagnostic genetic variation. Patients with or without diagnostic variation did not differ significantly in terms of enrichment of genetic variations that were rare/novel or predicted deleterious, or for possible environmental triggers.

Conclusion

We conclude that genetic testing for multiple genes in patients with aHUS negative for anti-FH antibodies reveals multiple candidate variations that require prioritization. Population data on variation frequency of the Indian population and supportive functional studies are likely to improve diagnostic yield.

Keywords

Hemolytic uremic syndrome Next-generation sequencing Multiplex ligation-dependent probe amplification 

Notes

Acknowledgements

The authors wish to acknowledge the contributions of the following colleagues: Savita Saini from the Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi; Arti Yadav, Jyotsna Singh, and Debasis Dash from the CSIR-Institute of Genomics and Integrative Biology, New Delhi.

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest.

Funding

The study was supported by Centre Franco-Indien pour la Promotion de la Recherche Avancée (CEFIPRA) vide Project Code no. 4703-1.

Human and animal rights

The study was approved by the Institute Ethics Committee vide IEC/NP-162/10.04.2015.

Informed consent

Informed consent was obtained from all participants. Identifying details of the participants have not been included in the manuscript.

Supplementary material

10157_2017_1478_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)
10157_2017_1478_MOESM2_ESM.docx (32 kb)
Supplementary material 2 (DOCX 32 kb)

References

  1. 1.
    Maga TK, Nishimura CJ, Weaver AE, Frees KL, Smith RJH. Mutations in alternative pathway complement proteins in American patients with atypical hemolytic uremic syndrome. Hum Mutat. 2010;31:E1445–60.CrossRefPubMedGoogle Scholar
  2. 2.
    Loirat C, Frémeaux-Bacchi V. Atypical hemolytic uremic syndrome. Orphanet J Rare Dis. 2011;6:60.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kavanagh D, Goodship TH, Richards A. Atypical hemolytic uremic syndrome. Semin Nephrol. 2013;33:508–30.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bu F, Maga T, Meyer NC, Wang K, Thomas CP, Nester CM, et al. Comprehensive genetic analysis of complement and coagulation genes in atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2014;25:55–64.CrossRefPubMedGoogle Scholar
  5. 5.
    Bu F, Borsa NG, Jones MB, Takanami E, Nishimura C, Hauer JJ, et al. High-throughput genetic testing for thrombotic microangiopathies and C3 glomerulopathies. J Am Soc Nephrol. 2016;27:1245–53.CrossRefPubMedGoogle Scholar
  6. 6.
    Dragon-Durey MA, Sinha A, Togarsimalemath SK, Bagga A. Anti-complement-factor H-associated glomerulopathies. Nat Rev Nephrol. 2016;12:563–78.CrossRefGoogle Scholar
  7. 7.
    Nester CM, Barbour T, de Cordoba SR, Dragon-Durey MA, Fremeaux-Bacchi V, Goodship THJ, et al. Atypical aHUS: state of the art. Mol Immunol. 2015;67:31–42.CrossRefPubMedGoogle Scholar
  8. 8.
    Ståhl A, Vaziri-Sani F, Heinen S, Kristoffersson A-C, Gydell K-H, Raafat R, et al. Factor H dysfunction in patients with atypical hemolytic uremic syndrome contributes to complement deposition on platelets and their activation. Blood. 2008;111:5307–15.CrossRefPubMedGoogle Scholar
  9. 9.
    Pechtl IC, Kavanagh D, Mcintosh N, Harris CL, Barlow PN. Disease-associated N-terminal complement factor H mutations perturb cofactor and decay-accelerating activities. J Biol Chem. 2011;286:11082–90.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Richards A, Kathryn Liszewski M, Kavanagh D, Fang CJ, Moulton E, Fremeaux-Bacchi V, et al. Implications of the initial mutations in membrane cofactor protein (MCP; CD46) leading to atypical hemolytic uremic syndrome. Mol Immunol. 2007;44:111–22.CrossRefPubMedGoogle Scholar
  11. 11.
    Tawadrous H, Maga T, Sharma J, Kupferman J, Smith RJH, Schoeneman M. A novel mutation in the complement factor B gene (CFB) and atypical hemolytic uremic syndrome. Pediatr Nephrol Berl Ger. 2010;25:947–51.CrossRefGoogle Scholar
  12. 12.
    Martínez-Barricarte R, Heurich M, López-Perrote A, Tortajada A, Pinto S, López-Trascasa M, et al. The molecular and structural bases for the association of complement C3 mutations with atypical hemolytic uremic syndrome. Mol Immunol. 2015;66:263–73.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sánchez Chinchilla D, Pinto S, Hoppe B, Adragna M, Lopez L, Justa Roldan ML, et al. Complement mutations in diacylglycerol kinase-ε-associated atypical hemolytic uremic syndrome. Clin J Am Soc Nephrol. 2014;9:1611–9.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Feng S, Eyler SJ, Zhang Y, Maga T, Nester CM, Kroll MH, et al. Partial ADAMTS13 deficiency in atypical hemolytic uremic syndrome. Blood. 2013;122:1487–93.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dragon-Durey M-A, Sethi SK, Bagga A, Blanc C, Blouin J, Ranchin B, et al. Clinical features of anti-factor H autoantibody-associated hemolytic uremic syndrome. J Am Soc Nephrol. 2010;21:2180–7.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26:1135–45.CrossRefPubMedGoogle Scholar
  17. 17.
    Fremeaux-Bacchi V, Fakhouri F, Garnier A, Bienaime F, Dragon-Durey MA, Ngo S, et al. Genetics and outcome of atypical hemolytic uremic syndrome: a nationwide French series comparing children and adults. Clin J Am Soc Nephrol. 2013;8:554–62.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Szarvas N, Szilágyi Á, Csuka D, Takács B, Rusai K, Müller T, et al. Genetic analysis and functional characterization of novel mutations in a series of patients with atypical hemolytic uremic syndrome. Mol Immunol. 2016;71:10–22.CrossRefPubMedGoogle Scholar
  19. 19.
    Fan X, Yoshida Y, Honda S, Matsumoto M, Sawada Y, Hattori M, et al. Analysis of genetic and predisposing factors in Japanese patients with atypical hemolytic uremic syndrome. Mol Immunol. 2013;54:238–46.CrossRefPubMedGoogle Scholar
  20. 20.
    Lee JM, Park YS, Lee JH, Park SJ, Shin JI, Park Y-H, et al. Atypical hemolytic uremic syndrome: Korean pediatric series: Korean pediatric aHUS cohort. Pediatr Int. 2015;57:431–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang T, Lu J, Liang S, Chen D, Zhang H, Zeng C, et al. Comprehensive analysis of complement genes in patients with atypical hemolytic uremic syndrome. Am J Nephrol. 2016;43:160–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Sinha A, Gulati A, Saini S, Blanc C, Gupta A, Gurjar BS, et al. Prompt plasma exchanges and immunosuppressive treatment improves the outcomes of anti-factor H autoantibody-associated hemolytic uremic syndrome in children. Kidney Int. 2014;85:1151–60.CrossRefPubMedGoogle Scholar
  23. 23.
    The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526:68–74.CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Exome Variant Server, NHLBI GO Exome Sequencing Project (ESP), Seattle, WA. http://evs.gs.washington.edu/EVS/. Accessed 15 Apr 2016
  26. 26.
    Saunders RE, Abarrategui-Garrido C, Frémeaux-Bacchi V, Goicoechea de Jorge E, Goodship THJ, López Trascasa M, et al. The interactive factor H-atypical hemolytic uremic syndrome mutation database and website: update and integration of membrane cofactor protein and factor I mutations with structural models. Hum Mutat. 2007;28:222–34.CrossRefPubMedGoogle Scholar
  27. 27.
    Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NST, et al. Human gene mutation database (HGMD): 2003 update. Hum Mutat. 2003;21:577–81.CrossRefPubMedGoogle Scholar
  28. 28.
    Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA, et al. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet. 2012;91:224–37.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Esparza-Gordillo J, Goicoechea de Jorge E, Buil A, Carreras Berges L, López-Trascasa M, Sánchez-Corral P, et al. Predisposition to atypical hemolytic uremic syndrome involves the concurrence of different susceptibility alleles in the regulators of complement activation gene cluster in 1q32. Hum Mol Genet. 2005;14:703–12.CrossRefPubMedGoogle Scholar
  31. 31.
    Ermini L, Goodship THJ, Strain L, Weale ME, Sacks SH, Cordell HJ, et al. Common genetic variants in complement genes other than CFH, CD46 and the CFHRs are not associated with aHUS. Mol Immunol. 2012;49:640–8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Idorn T, Schejbel L, Rydahl C, Heaf JG, Jølvig KR, Bergstrøm M, et al. Anti-glomerular basement membrane glomerulonephritis and thrombotic microangiopathy in first degree relatives; a case report. BMC Nephrol. 2012;13:64.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mitchell KJ. What is complex about complex disorders? Genome Biol. 2012;13:237.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J, Abecasis GR, et al. Guidelines for investigating causality of sequence variants in human disease. Nature. 2014;508:469–76.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Noris M, Caprioli J, Bresin E, Mossali C, Pianetti G, Gamba S, et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol. 2010;5:1844–59.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bresin E, Rurali E, Caprioli J, Sanchez-Corral P, Fremeaux-Bacchi V, Rodriguez de Cordoba S, et al. Combined complement gene mutations in atypical hemolytic uremic syndrome influence clinical phenotype. J Am Soc Nephrol. 2013;24:475–86.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Goodship THJ, Cook HT, Fakhouri F, Fervenza FC, Frémeaux-Bacchi V, Kavanagh D, et al. Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int. 2017;91:539–51.CrossRefPubMedGoogle Scholar
  38. 38.
    Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–23.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Japanese Society of Nephrology 2017

Authors and Affiliations

  • R. W. Thergaonkar
    • 1
  • Ankita Narang
    • 2
  • Bahadur Singh Gurjar
    • 3
  • Pradeep Tiwari
    • 2
  • Mamta Puraswani
    • 1
  • Himanshi Saini
    • 1
  • Aditi Sinha
    • 1
  • Binuja Varma
    • 2
  • Mitali Mukerji
    • 2
  • Pankaj Hari
    • 1
  • Arvind Bagga
    • 1
  1. 1.Division of Nephrology, Department of PediatricsAll India Institute of Medical SciencesNew DelhiIndia
  2. 2.CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
  3. 3.National Institute of ImmunologyNew DelhiIndia

Personalised recommendations