Home-based versus center-based aerobic exercise on cardiopulmonary performance, physical function, quality of life and quality of sleep of overweight patients with chronic kidney disease

  • Danilo Takashi Aoike
  • Flavia Baria
  • Maria Ayako Kamimura
  • Adriano Ammirati
  • Lilian Cuppari
Original article

Abstract

Background

The association between chronic kidney disease (CKD) and obesity can decrease the patients’ cardiopulmonary capacity, physical functioning and quality of life. The search for effective and practical alternative methods of exercise to engage patients in training programs is of great importance. Therefore, we aimed to compare the effects of home-based versus center-based aerobic exercise on the cardiopulmonary and functional capacities, quality of life and quality of sleep of overweight non-dialysis-dependent patients with CKD (NDD-CKD).

Methods

Forty sedentary overweight patients CKD stages 3 and 4 were randomly assigned to an exercise group [home-based group (n = 12) or center-based exercise group (n = 13)] or to a control group (n = 15) that did not perform any exercise. Cardiopulmonary exercise test, functional capacity tests, quality of life, quality of sleep and clinical parameters were assessed at baseline, 12 and 24 weeks.

Results

The VO2peak and all cardiopulmonary parameters evaluated were similarly improved (p < 0.05) after 12 and 24 weeks in both exercise groups. The functional capacity tests improved during the follow-up in the home-based group (p < 0.05) and reached values similar to those obtained in the center-based group. The benefits achieved in both exercise groups were also reflected in improvement of quality of life and sleep (p < 0.05). No differences were observed between the exercise groups, and no changes in any of the parameters investigated were found in the control group.

Conclusion

Home-based aerobic training was as effective as center-based training in improving the physical and functional capabilities, quality of life and sleep in overweight NDD-CKD patients.

Keywords

Aerobic exercise Chronic kidney disease Home-based exercise Obesity Physical function Quality of sleep 

References

  1. 1.
    Hsieh RL, Lee WC, Huang HY, Chang CH. Quality of life and its correlates in ambulatory hemodialysis patients. J Nephrol. 2007;20(6):731–8.PubMedGoogle Scholar
  2. 2.
    Kouidi EJ. Central and peripheral adaptations to physical training in patients with end-stage renal disease. Sports Med. 2001;31(9):651–65.PubMedCrossRefGoogle Scholar
  3. 3.
    Sietsema KE, Amato A, Adler SG, Brass EP. Exercise capacity as a predictor of survival among ambulatory patients with end-stage renal disease. Kidney Int. 2004;65(2):719–24. doi:10.1111/j.1523-1755.2004.00411.x.PubMedCrossRefGoogle Scholar
  4. 4.
    Knight EL, Ofsthun N, Teng M, Lazarus JM, Curhan GC. The association between mental health, physical function, and hemodialysis mortality. Kidney Int. 2003;63(5):1843–51. doi:10.1046/j.1523-1755.2003.00931.x.PubMedCrossRefGoogle Scholar
  5. 5.
    Segura-Orti E, Johansen KL. Exercise in end-stage renal disease. Semin Dial. 2010;23(4):422–30. doi:10.1111/j.1525-139X.2010.00766.x.PubMedCrossRefGoogle Scholar
  6. 6.
    Gould DW, Graham-Brown MP, Watson EL, Viana JL, Smith AC. Physiological benefits of exercise in pre-dialysis chronic kidney disease. Nephrology (Carlton). 2014;19(9):519–27. doi:10.1111/nep.12285.CrossRefGoogle Scholar
  7. 7.
    KDIGO. KDIGO 2012 clinical practice guidelines for the evaluation and management of CHronic kidney disease. Kidney Int Suppl. 2013;3(1):1–150. doi:10.1038/kisup.2012.73.CrossRefGoogle Scholar
  8. 8.
    Manfredini F, Malagoni AM, Mascoli F, Mandini S, Taddia MC, Basaglia N, et al. Training rather than walking: the test in -train out program for home-based rehabilitation in peripheral arteriopathy. Circ J. 2008;72(6):946–52.PubMedCrossRefGoogle Scholar
  9. 9.
    du Moulin M, Taube K, Wegscheider K, Behnke M, van den Bussche H. Home-based exercise training as maintenance after outpatient pulmonary rehabilitation. Respiration. 2009;77(2):139–45. doi:10.1159/000150315.PubMedCrossRefGoogle Scholar
  10. 10.
    Borg E, Kaijser L. A comparison between three rating scales for perceived exertion and two different work tests. Scand J Med Sci Sports. 2006;16(1):57–69. doi:10.1111/j.1600-0838.2005.00448.x.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang JG, Ohta T, Ishikawa-Takata K, Tabata I, Miyashita M. Effects of daily activity recorded by pedometer on peak oxygen consumption (VO2peak), ventilatory threshold and leg extension power in 30- to 69-year-old Japanese without exercise habit. Eur J Appl Physiol. 2003;90(1–2):109–13. doi:10.1007/s00421-003-0860-0.PubMedCrossRefGoogle Scholar
  12. 12.
    Bhambhani Y, Singh M. Ventilatory thresholds during a graded exercise test. Respiration. 1985;47(2):120–8.PubMedCrossRefGoogle Scholar
  13. 13.
    American College of Sports Medicine Position Stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc. 1998;30(6):975–91.Google Scholar
  14. 14.
    Bruce RA, Kusumi F, Hosmer D. Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am Heart J. 1973;85(4):546–62.PubMedCrossRefGoogle Scholar
  15. 15.
    Rikli RE, Jones C. Development and validation of functional fitness test for community-residing older adults. J Aging Phys Act. 1999;6:127–59.Google Scholar
  16. 16.
    McHorney CA, Ware JE Jr, Raczek AE. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med Care. 1993;31(3):247–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Buysse DJ, Reynolds CF, 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213.PubMedCrossRefGoogle Scholar
  18. 18.
    Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Boyce ML, Robergs RA, Avasthi PS, Roldan C, Foster A, Montner P et al. Exercise training by individuals with predialysis renal failure: cardiorespiratory endurance, hypertension, and renal function. Am J Kidney Dis. 1997;30(2):180–92. doi:10.1016/S0272-6386(97)90051-2.PubMedCrossRefGoogle Scholar
  20. 20.
    Eidemak I, Haaber AB, Feldt-Rasmussen B, Kanstrup IL, Strandgaard S. Exercise training and the progression of chronic renal failure. Nephron. 1997;75(1):36–40.PubMedCrossRefGoogle Scholar
  21. 21.
    Mustata S, Groeneveld S, Davidson W, Ford G, Kiland K, Manns B. Effects of exercise training on physical impairment, arterial stiffness and health-related quality of life in patients with chronic kidney disease: a pilot study. Int Urol Nephrol. 2011;43(4):1133–41. doi:10.1007/s11255-010-9823-7.PubMedCrossRefGoogle Scholar
  22. 22.
    Aoike DT, Baria F, Rocha ML, Kamimura MA, Mello MT, Tufik S, et al. Impact of training at ventilatory threshold on cardiopulmonary and functional capacity in overweight patients with chronic kidney disease. J Bras Nefrol. 2012;34(2):139–47.PubMedCrossRefGoogle Scholar
  23. 23.
    Roshanravan B, Robinson-Cohen C, Patel KV, Ayers E, Littman AJ, de Boer IH, et al. Association between physical performance and all-cause mortality in CKD. J Am Soc Nephrol. 2013;24(5):822–30. doi:10.1681/asn.2012070702.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Sietsema KE, Hiatt WR, Esler A, Adler S, Amato A, Brass EP. Clinical and demographic predictors of exercise capacity in end-stage renal disease. Am J Kidney Dis. 2002;39(1):76–85. doi:10.1053/ajkd.2002.29884.PubMedCrossRefGoogle Scholar
  25. 25.
    Avesani CM, Trolonge S, Fau-Deleaval P, Deleaval P, Fau-Baria F, Baria F, Fau-Mafra D, Mafra D, Fau-Faxen-Irving G, Faxen-Irving G, Fau-Chauveau P, et al. Physical activity and energy expenditure in haemodialysis patients: an international survey. Nephrol Dial Transplant. 2012;27:1460–2385. doi:10.1093/ndt/gfr692.CrossRefGoogle Scholar
  26. 26.
    Johansen KL. Exercise in the end-stage renal disease population. J Am Soc Nephrol. 2007;18(6):1845–54. doi:10.1681/asn.2007010009.PubMedCrossRefGoogle Scholar
  27. 27.
    Clyne N, Jogestrand T, Lins LE, Pehrsson SK, Ekelund LG. Factors limiting physical working capacity in predialytic uraemic patients. Acta Med Scand. 1987;222(2):183–90.PubMedCrossRefGoogle Scholar
  28. 28.
    Dipp T. Força muscular respiratória e capacidade funcional na insuficiência renal terminal. Rev Bras Med Esporte. 2010;16(4):246–9.CrossRefGoogle Scholar
  29. 29.
    Cury JL, Brunetto AF, Aydos RD. Efeitos negativos da insuficiência renal crônica sobre a função pulmonar e a capacidade funcional. Rev Bras Fisioter. 2010;14(2):91–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Toyama K, Sugiyama S, Oka H, Sumida H, Ogawa H. Exercise therapy correlates with improving renal function through modifying lipid metabolism in patients with cardiovascular disease and chronic kidney disease. J Cardiol. 2010;56(2):142–6. doi:10.1016/j.jjcc.2010.06.007.PubMedCrossRefGoogle Scholar
  31. 31.
    Chetta A, Zanini A, Pisi G, Aiello M, Tzani P, Neri M, et al. Reference values for the 6-min walk test in healthy subjects 20–50 years old. Respir Med. 2006;100(9):1573–8. doi:10.1016/j.rmed.2006.01.001.PubMedCrossRefGoogle Scholar
  32. 32.
    Camarri B, Eastwood PR, Cecins NM, Thompson PJ, Jenkins S. Six minute walk distance in healthy subjects aged 55–75 years. Respir Med. 2006;100(4):658–65. doi:10.1016/j.rmed.2005.08.003.PubMedCrossRefGoogle Scholar
  33. 33.
    Perlman RL, Finkelstein FO, Liu L, Roys E, Kiser M, Eisele G, et al. Quality of life in chronic kidney disease (CKD): a cross-sectional analysis in the Renal Research Institute-CKD study. Am J Kidney Dis. 2005;45(4):658–66.PubMedCrossRefGoogle Scholar
  34. 34.
    Walters BA, Hays RD, Spritzer KL, Fridman M, Carter WB. Health-related quality of life, depressive symptoms, anemia, and malnutrition at hemodialysis initiation. Am J Kidney Dis. 2002;40(6):1185–94. doi:10.1053/ajkd.2002.36879.PubMedCrossRefGoogle Scholar
  35. 35.
    Nonoyama ML, Brooks D, Ponikvar A,  Jassal SV,  Kontos P,  Devins GM, Heck C, Laprade J, Naglie G. Exercise program to enhance physical performance and quality of life of older hemodialysis patients: a feasibility study. Int Urol Nephrol. 2010;42(4):1125–30. doi:10.1007/s11255-010-9718-7.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Rebollo-Rubio A, Morales-Asencio JM, Pons-Raventos ME, Mansilla-Francisco JJ. Review of studies on health related quality of life in patients with advanced chronic kidney disease in Spain. Nefrologia. 2015;35(1):92–109. doi:10.3265/Nefrologia.pre2014.Jul.12133.PubMedGoogle Scholar
  37. 37.
    Headley S, Germain M, Mailloux P, Mulhern J, Ashworth B, Burris J et al. Resistance training improves strength and functional measures in patients with end-stage renal disease. Am J Kidney Dis. 2002;40(2):355–64. doi:10.1053/ajkd.2002.34520.PubMedCrossRefGoogle Scholar
  38. 38.
    Aoike DT, Baria F, Kamimura MA, Ammirati A, de Mello MT, Cuppari L. Impact of home-based aerobic exercise on the physical capacity of overweight patients with chronic kidney disease. Int Urol Nephrol. 2015;47(2):359–67. doi:10.1007/s11255-014-0894-8.PubMedCrossRefGoogle Scholar
  39. 39.
    Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328(17):1230–5. doi:10.1056/nejm199304293281704.PubMedCrossRefGoogle Scholar
  40. 40.
    Hirotsu C, Tufik S, Bergamaschi CT, Tenorio NM, Araujo P, Andersen ML. Sleep pattern in an experimental model of chronic kidney disease. Am J Physiol Renal Physiol. 2010;299(6):F1379–88. doi:10.1152/ajprenal.00118.2010.PubMedCrossRefGoogle Scholar
  41. 41.
    Sakkas GK, Gourgoulianis KI, Karatzaferi C, Liakopoulos V, Maridaki MD, Pastaka C, et al. Haemodialysis patients with sleep apnoea syndrome experience increased central adiposity and altered muscular composition and functionality. Nephrol Dial Transpl. 2008;23(1):336–44. doi:10.1093/ndt/gfm559.CrossRefGoogle Scholar
  42. 42.
    Turek NF, Ricardo AC, Lash JP. Sleep disturbances as nontraditional risk factors for development and progression of CKD: review of the evidence. Am J Kidney Dis. 2012;60(5):823–33. doi:10.1053/j.ajkd.2012.04.027.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Iftikhar IH, Kline CE, Youngstedt SD. Effects of exercise training on sleep apnea: a meta-analysis. Lung. 2014;192(1):175–84. doi:10.1007/s00408-013-9511-3.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Chennaoui M, Arnal PJ, Sauvet F, Leger D. Sleep and exercise: a reciprocal issue? Sleep Med Rev. 2014;. doi:10.1016/j.smrv.2014.06.008.PubMedGoogle Scholar
  45. 45.
    Afsar B. Relationship between total testosterone, cognitive function, depressive behavior, and sleep quality in chronic kidney disease patients not on dialysis. Clin Exp Nephrol. 2013;17(1):59–65. doi:10.1007/s10157-012-0652-0.PubMedCrossRefGoogle Scholar
  46. 46.
    De Santo RM, Bilancio G, Santoro D, Vecchi ML, Perna A, De Santo NG, et al. A longitudinal study of sleep disorders in early-stage chronic kidney disease. J Ren Nutr. 2010;20(5 Suppl):S59–63. doi:10.1053/j.jrn.2010.06.003.PubMedCrossRefGoogle Scholar
  47. 47.
    Cohen SD, Patel SS, Khetpal P, Peterson RA, Kimmel PL. Pain, sleep disturbance, and quality of life in patients with chronic kidney disease. Clin J Am Soc Nephrol. 2007;2(5):919–25. doi:10.2215/cjn.00820207.PubMedCrossRefGoogle Scholar
  48. 48.
    Taylor RS, Dalal H, Jolly K, Zawada A, Dean SG, Cowie A, et al. Home-based versus centre-based cardiac rehabilitation. Cochrane Database Syst Rev. 2015;8:CD007130. doi:10.1002/14651858.CD007130.pub3.Google Scholar
  49. 49.
    Konstantinidou E, Koukouvou G, Kouidi E, Deligiannis A, Tourkantonis A. Exercise training in patients with end-stage renal disease on hemodialysis: comparison of three rehabilitation programs. J Rehabil Med. 2002;34(1):40–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA. American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc. 2004;36(3):533–53. doi:10.1249/01.MSS.0000115224.88514.3A.PubMedCrossRefGoogle Scholar
  51. 51.
    Nybo L, Sundstrup E, Jakobsen MD, Mohr M, Hornstrup T, Simonsen L, et al. High-intensity training versus traditional exercise interventions for promoting health. Med Sci Sports Exerc. 2010;42(10):1951–8. doi:10.1249/MSS.0b013e3181d99203.PubMedCrossRefGoogle Scholar
  52. 52.
    Pechter U, Maaroos J, Mesikepp S, Veraksits A, Ots M. Regular low-intensity aquatic exercise improves cardio-respiratory functional capacity and reduces proteinuria in chronic renal failure patients. Nephrol Dial Transplant. 2003;18(3):624–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Pechter U, Ots M, Mesikepp S, Zilmer K, Kullissaar T, Vihalemm T, et al. Beneficial effects of water-based exercise in patients with chronic kidney disease. Int J Rehabil Res. 2003;26(2):153–6. doi:10.1097/01.mrr.0000070755.63544.5a.PubMedCrossRefGoogle Scholar
  54. 54.
    Dalal HM, Evans PH, Campbell JL, Taylor RS, Watt A, Read KL, et al. Home-based versus hospital-based rehabilitation after myocardial infarction: a randomized trial with preference arms—Cornwall Heart Attack Rehabilitation Management Study (CHARMS). Int J Cardiol. 2007;119(2):202–11. doi:10.1016/j.ijcard.2006.11.018.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Society of Nephrology 2017

Authors and Affiliations

  • Danilo Takashi Aoike
    • 1
  • Flavia Baria
    • 2
  • Maria Ayako Kamimura
    • 1
    • 2
  • Adriano Ammirati
    • 1
  • Lilian Cuppari
    • 1
    • 2
  1. 1.Division of NephrologyFederal University of São PauloSão PauloBrazil
  2. 2.Nutrition ProgramFederal University of São PauloSão PauloBrazil

Personalised recommendations