Skip to main content

Advertisement

Log in

The FGF23 and Klotho system beyond mineral metabolism

  • Review article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

FGF23 is a bone-derived hormone that acts primarily on the kidney to induce phosphaturia and suppress synthesis of 1,25-dihydroxyvitamin D3. The unique feature of FGF23 is that it requires Klotho as an obligate co-receptor. The FGF23–Klotho system has emerged as an endocrine axis indispensable for maintaining phosphate homeostasis. Mineral and bone disorders associated with chronic kidney disease (CKD-MBD) can be viewed as a series of events triggered by a compensatory response of the FGF23–Klotho system to excess phosphate intake relative to the residual nephron number. Furthermore, the fact that disruption of the FGF23–Klotho system causes phosphate retention and a syndrome resembling aging in mammals has led to the notion that phosphate accelerates aging. The aging-like pathology caused by phosphate, or phosphatopathy, may be unique to the higher organisms having the Klotho gene and provides new insights into the molecular mechanism of aging in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51.

    Article  CAS  PubMed  Google Scholar 

  2. Kuro-o M, Hanaoka K, Hiroi Y, Noguchi T, Fujimori Y, Takewaki S, et al. Salt-sensitive hypertension in transgenic mice overexpressing Na(+)-proton exchanger. Circ Res. 1995;76(1):148–53.

    Article  CAS  PubMed  Google Scholar 

  3. Azuma M, Koyama D, Kikuchi J, Yoshizawa H, Thasinas D, Shiizaki K, et al. Promoter methylation confers kidney-specific expression of the Klotho gene. FASEB J. 2012;26(10):4264–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. White KE, Evans WE, O’Rlordan JLH, Speer MC, Econs MJ, Lorenz-Deplereux B, et al. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet. 2000;26(3):345–8.

    Article  CAS  Google Scholar 

  5. White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int. 2001;60(6):2079–86.

    Article  CAS  PubMed  Google Scholar 

  6. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006;281(10):6120–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113(4):561–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsujikawa H, Kurotaki Y, Fujimori T, Fukuda K, Nabeshima Y. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol. 2003;17(12):2393–403.

    Article  CAS  PubMed  Google Scholar 

  9. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19(3):429–35.

    Article  CAS  PubMed  Google Scholar 

  10. Hesse M, Frohlich LF, Zeitz U, Lanske B, Erben RG. Ablation of vitamin D signaling rescues bone, mineral, and glucose homeostasis in Fgf-23 deficient mice. Matrix Biol. 2007;26(2):75–84.

    Article  CAS  PubMed  Google Scholar 

  11. Razzaque MS, Sitara D, Taguchi T, St-Arnaud R, Lanske B. Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB J. 2006;20(6):720–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stubbs JR, Liu S, Tang W, Zhou J, Wang Y, Yao X, et al. Role of hyperphosphatemia and 1,25-dihydroxyvitamin D in vascular calcification and mortality in fibroblastic growth factor 23 null mice. J Am Soc Nephrol. 2007;18(7):2116–24.

    Article  CAS  PubMed  Google Scholar 

  13. Ohnishi M, Nakatani T, Lanske B, Razzaque MS. In vivo genetic evidence for suppressing vascular and soft-tissue calcification through the reduction of serum phosphate levels, even in the presence of high serum calcium and 1,25-dihydroxyvitamin d levels. Circ Cardiovasc Genet. 2009;2(6):583–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Phosphatopathies Kuro-o M. In: Friedberg EC, Castrillon DH, Galindo RL, Wharton KA, editors. New-opathies—an emerging molecular reclassification of human disease. 1st ed. Singapore: World Scientific Publishing; 2012. p. 267–87.

    Google Scholar 

  15. Shimamura Y, Hamada K, Inoue K, Ogata K, Ishihara M, Kagawa T, et al. Serum levels of soluble secreted alpha-Klotho are decreased in the early stages of chronic kidney disease, making it a probable novel biomarker for early diagnosis. Clin Exp Nephrol. 2012;16(5):722–9.

    Article  CAS  PubMed  Google Scholar 

  16. Hu MC, Shiizaki K, Kuro-o M, Moe OW. Fibroblast growth factor 23 and klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol. 2013;75:503–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jamal SA, Vandermeer B, Raggi P, Mendelssohn DC, Chatterley T, Dorgan M, et al. Effect of calcium-based versus non-calcium-based phosphate binders on mortality in patients with chronic kidney disease: an updated systematic review and meta-analysis. Lancet. 2013;382(9900):1268–77.

    Article  CAS  PubMed  Google Scholar 

  18. Stenvinkel P, Larsson TE. Chronic kidney disease: a clinical model of premature aging. Am J Kidney Dis. 2013;62(2):339–51.

    Article  PubMed  Google Scholar 

  19. Di Marco GS, Hausberg M, Hillebrand U, Rustemeyer P, Wittkowski W, Lang D, et al. Increased inorganic phosphate induces human endothelial cell apoptosis in vitro. Am J Physiol Renal Physiol. 2008;294(6):F1381–7.

    Article  PubMed  Google Scholar 

  20. Steitz SA, Speer MY, Curinga G, Yang HY, Haynes P, Aebersold R, et al. Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res. 2001;89(12):1147–54.

    Article  CAS  PubMed  Google Scholar 

  21. Jono S, McKee MD, Murry CE, Shioi A, Nishizawa Y, Mori K, et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ Res. 2000;87(7):E10–7.

    Article  CAS  PubMed  Google Scholar 

  22. Li X, Yang HY, Giachelli CM. Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification. Circ Res. 2006;98(7):905–12.

    Article  CAS  PubMed  Google Scholar 

  23. Villa-Bellosta R, Sorribas V. Phosphonoformic acid prevents vascular smooth muscle cell calcification by inhibiting calcium-phosphate deposition. Arterioscler Thromb Vasc Biol. 2009;29(5):761–6.

    Article  CAS  PubMed  Google Scholar 

  24. Chavkin NW, Chia JJ, Crouthamel MH, Giachelli CM. Phosphate uptake-independent signaling functions of the type III sodium-dependent phosphate transporter, PiT-1, in vascular smooth muscle cells. Exp Cell Res. 2015;333(1):39–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ewence AE, Bootman M, Roderick HL, Skepper JN, McCarthy G, Epple M, et al. Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization. Circ Res. 2008;103(5):e28–34.

    Article  CAS  PubMed  Google Scholar 

  26. Sage AP, Lu J, Tintut Y, Demer LL. Hyperphosphatemia-induced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro. Kidney Int. 2011;79(4):414–22.

    Article  CAS  PubMed  Google Scholar 

  27. Smith ER, Hanssen E, McMahon LP, Holt SG. Fetuin-A-containing calciprotein particles reduce mineral stress in the macrophage. PLoS One. 2013;8(4):e60904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuro-o M. Klotho, phosphate and FGF-23 in ageing and disturbed mineral metabolism. Nat Rev Nephrol. 2013;9(11):650–60.

    Article  CAS  PubMed  Google Scholar 

  29. Rudra-Ganguly N, Ghosh AK, Roy-Burman P. Retrovirus receptor PiT-1 of the Felis catus. Biochim Biophys Acta. 1998;1443(3):407–13.

    Article  CAS  PubMed  Google Scholar 

  30. Hamano T, Matsui I, Mikami S, Tomida K, Fujii N, Imai E, et al. Fetuin-mineral complex reflects extraosseous calcification stress in CKD. J Am Soc Nephrol. 2010;21(11):1998–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith ER, Ford ML, Tomlinson LA, Rajkumar C, McMahon LP, Holt SG. Phosphorylated fetuin-A-containing calciprotein particles are associated with aortic stiffness and a procalcific milieu in patients with pre-dialysis CKD. Nephrol Dial Transplant. 2012;27(5):1957–66.

    Article  CAS  PubMed  Google Scholar 

  32. Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci USA. 2007;104(50):19796–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bloch L, Sineshchekova O, Reichenbach D, Reiss K, Saftig P, Kuro-o M, et al. Klotho is a substrate for alpha-, beta- and gamma-secretase. FEBS Lett. 2009;583(19):3221–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Imura A, Iwano A, Tohyama O, Tsuji Y, Nozaki K, Hashimoto N, et al. Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Lett. 2004;565(1–3):143–7.

    Article  CAS  PubMed  Google Scholar 

  35. Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science. 2005;310(5747):490–3.

    Article  CAS  PubMed  Google Scholar 

  36. Cha SK, Ortega B, Kurosu H, Rosenblatt KP, Kuro-o M, Huang CL. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci USA. 2008;105(28):9805–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cha SK, Hu MC, Kurosu H, Kuro-o M, Moe O, Huang CL. Regulation of ROMK1 channel and renal K+ excretion by Klotho. Mol Pharmacol. 2009;76(1):38–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xie J, Cha SK, An SW, Kuro-o M, Birnbaumer L, Huang CL. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat Commun. 2012;3:1238.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, et al. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010;24(9):3438–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, et al. Suppression of aging in mice by the hormone Klotho. Science. 2005;309(5742):1829–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu H, Fergusson MM, Castilho RM, Liu J, Cao L, Chen J, et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science. 2007;317(5839):803–6.

    Article  CAS  PubMed  Google Scholar 

  42. Doi S, Zou Y, Togao O, Pastor JV, John GB, Wang L, et al. Klotho inhibits transforming growth factor-β1 (TGF-β1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem. 2011;286(10):8655–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dubal DB, Yokoyama JS, Zhu L, Broestl L, Worden K, Wang D, et al. Life extension factor klotho enhances cognition. Cell reports. 2014;7(4):1065–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Isakova T, Wahl P, Vargas GS, Gutierrez OM, Scialla J, Xie H, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79(12):1370–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Goto S, Nakai K, Kono K, Yonekura Y, Ito J, Fujii H, et al. Dietary phosphorus restriction by a standard low-protein diet decreased serum fibroblast growth factor 23 levels in patients with early and advanced stage chronic kidney disease. Clin Exp Nephrol. 2014;18(6):925–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided by Japan Society for the Promotion of Science (Grant Nos. 16H05302, 16K15470).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Kuro-o.

Ethics declarations

Conflict of interest

This supplement is supported by the grants from The Japanese Society for Kidney Bone Disease (JSKBD) and from the Research Meeting on Kidney and Metabolic Bone Disease.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuro-o, M. The FGF23 and Klotho system beyond mineral metabolism. Clin Exp Nephrol 21 (Suppl 1), 64–69 (2017). https://doi.org/10.1007/s10157-016-1357-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-016-1357-6

Keywords

Navigation