Skip to main content

Advertisement

Log in

The potential role of perivascular lymphatic vessels in preservation of kidney allograft function

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Lymphangiogenesis occurs in diseased native kidneys and kidney allografts, and correlates with histological injury; however, the clinical significance of lymphatic vessels in kidney allografts is unclear.

Methods

This study retrospectively reviewed 63 kidney transplant patients who underwent protocol biopsies. Lymphatic vessels were identified by immunohistochemical staining for podoplanin, and were classified according to their location as perivascular or interstitial lymphatic vessels. The associations between perivascular lymphatic density and kidney allograft function and pathological findings were analyzed.

Results

There were no significant differences in perivascular lymphatic densities in kidney allograft biopsy specimens obtained at 0 h, 3 months and 12 months. The groups with higher perivascular lymphatic density showed a lower proportion of progression of interstitial fibrosis/tubular atrophy grade from 3 to 12 months (P for trend = 0.039). Perivascular lymphatic density was significantly associated with annual decline of estimated glomerular filtration rate after 12 months (r = −0.31, P = 0.017), even after adjusting for multiple confounders (standardized β = −0.30, P = 0.019).

Conclusions

High perivascular lymphatic density is associated with favourable kidney allograft function. The perivascular lymphatic network may be involved in inhibition of allograft fibrosis and stabilization of graft function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Howard RJ, Patton PR, Reed AI, Hemming AW, Van der Werf WJ, Pfaff WW, et al. The changing causes of graft loss and death after kidney transplantation. Transplantation. 2002;73:1923–8.

    Article  PubMed  Google Scholar 

  2. Teraoka S, Nomoto K, Kikuchi K, Hirano T, Satomi S, Hasegawa A, et al. Outcomes of kidney transplants from non-heart-beating deceased donors as reported to the Japan Organ Transplant Network from April 1995–December 2003: a multi-center report. Clin Transpl. 2004;91–102.

  3. Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Allen RD, Chapman JR. The natural history of chronic allograft nephropathy. N Engl J Med. 2003;349:2326–33.

    Article  CAS  PubMed  Google Scholar 

  4. Chapman JR, O’Connell PJ, Nankivell BJ. Chronic renal allograft dysfunction. J Am Soc Nephrol. 2005;16:3015–26.

    Article  PubMed  Google Scholar 

  5. Joosten SA, Sijpkens YW, van Kooten C, Paul LC. Chronic renal allograft rejection: pathophysiologic considerations. Kidney Int. 2005;68:1–13.

    Article  CAS  PubMed  Google Scholar 

  6. Adair A, Mitchell DR, Kipari T, Qi F, Bellamy CO, Robertson F, et al. Peritubular capillary rarefaction and lymphangiogenesis in chronic allograft failure. Transplantation. 2007;83:1542–50.

    Article  PubMed  Google Scholar 

  7. Kerjaschki D, Regele HM, Moosberger I, Nagy-Bojarski K, Watschinger B, Soleiman A, et al. Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J Am Soc Nephrol. 2004;15:603–12.

    Article  CAS  PubMed  Google Scholar 

  8. Saaristo A, Tammela T, Farkkila A, Karkkainen M, Suominen E, Yla-Herttuala S, et al. Vascular endothelial growth factor-C accelerates diabetic wound healing. Am J Pathol. 2006;169:1080–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baluk P, Tammela T, Ator E, Lyubynska N, Achen MG, Hicklin DJ, et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Investig. 2005;115:247–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Goor H, Leuvenink HG. The goddess of the waters. Kidney Int. 2009;75:767–9.

    Article  PubMed  Google Scholar 

  11. Thaunat O, Patey N, Morelon E, Michel JB, Nicoletti A. Lymphoid neogenesis in chronic rejection: the murderer is in the house. Curr Opin Immunol. 2006;18:576–9.

    Article  CAS  PubMed  Google Scholar 

  12. Vass DG, Hughes J, Marson LP. Restorative and rejection-associated lymphangiogenesis after renal transplantation: friend or foe? Transplantation. 2009;88:1237–9.

    Article  PubMed  Google Scholar 

  13. Seeger H, Bonani M, Segerer S. The role of lymphatics in renal inflammation. Nephrol Dial Transplant. 2012;27:2634–41.

    Article  PubMed  Google Scholar 

  14. Stuht S, Gwinner W, Franz I, Schwarz A, Jonigk D, Kreipe H, et al. Lymphatic neoangiogenesis in human renal allografts: results from sequential protocol biopsies. Am J Transplant. 2007;7:377–84.

    Article  CAS  PubMed  Google Scholar 

  15. Solez K, Colvin RB, Racusen LC, Haas M, Sis B, Mengel M, et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am J Transplant. 2008;8:753–60.

    Article  CAS  PubMed  Google Scholar 

  16. Tsuchimoto A, Masutani K, Haruyama N, Nagata M, Noguchi H, Okabe Y, et al. Renal interstitial fibrosis in 0-hour biopsy as a predictor of post-transplant anemia. Am J Nephrol. 2013;38:267–74.

    Article  CAS  PubMed  Google Scholar 

  17. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    Article  CAS  PubMed  Google Scholar 

  18. Schwartz GJ, Brion LP, Spitzer A. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am. 1987;34:571–90.

    Article  CAS  PubMed  Google Scholar 

  19. Nakano T, Nakashima Y, Yonemitsu Y, Sumiyoshi S, Chen YX, Akishima Y, et al. Angiogenesis and lymphangiogenesis and expression of lymphangiogenic factors in the atherosclerotic intima of human coronary arteries. Hum Pathol. 2005;36:330–40.

    Article  CAS  PubMed  Google Scholar 

  20. Sakamoto I, Ito Y, Mizuno M, Suzuki Y, Sawai A, Tanaka A, et al. Lymphatic vessels develop during tubulointerstitial fibrosis. Kidney Int. 2009;75:828–38.

    Article  CAS  PubMed  Google Scholar 

  21. Zimmer JK, Dahdal S, Muhlfeld C, Bergmann IP, Gugger M, Huynh-Do U. Lymphangiogenesis is upregulated in kidneys of patients with multiple myeloma. Anat Rec. 2010;293:1497–505.

    Article  Google Scholar 

  22. Yamamoto I, Yamaguchi Y, Yamamoto H, Hosoya T, Horita S, Tanabe K, et al. A pathological analysis of lymphatic vessels in early renal allograft. Transplant Proc. 2006;38:3300–3.

    Article  CAS  PubMed  Google Scholar 

  23. Xu X, Han Y, Wang Q, Cai M, Qian Y, Wang X, et al. Characterisation of tertiary lymphoid organs in explanted rejected donor kidneys. Immunol Investig. 2016;45:38–51.

    Article  CAS  Google Scholar 

  24. Suzuki Y, Ito Y, Mizuno M, Kinashi H, Sawai A, Noda Y, et al. Transforming growth factor-beta induces vascular endothelial growth factor-C expression leading to lymphangiogenesis in rat unilateral ureteral obstruction. Kidney Int. 2012;81:865–79.

    Article  CAS  PubMed  Google Scholar 

  25. Alitalo K. The lymphatic vasculature in disease. Nat Med. 2011;17:1371–80.

    Article  CAS  PubMed  Google Scholar 

  26. Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Investig. 2004;113:1040–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yao LC, Baluk P, Feng J, McDonald DM. Steroid-resistant lymphatic remodeling in chronically inflamed mouse airways. Am J Pathol. 2010;176:1525–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Y, Oliver G. Current views on the function of the lymphatic vasculature in health and disease. Genes Dev. 2010;24:2115–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mackay CR, Marston WL, Dudler L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J Exp Med. 1990;171:801–17.

    Article  CAS  PubMed  Google Scholar 

  30. Martinez de la Torre Y, Locati M, Buracchi C, Dupor J, Cook DN, Bonecchi R, et al. Increased inflammation in mice deficient for the chemokine decoy receptor D6. Eur J Immunol. 2005;35:1342–6.

    Article  CAS  PubMed  Google Scholar 

  31. Segerer S, Jedlicka J, Wuthrich RP. Atypical chemokine receptors in renal inflammation. Nephron Exp Nephrol. 2010;115:e89–95.

    Article  CAS  PubMed  Google Scholar 

  32. Wilcox CS, Sterzel RB, Dunckel PT, Mohrmann M, Perfetto M. Renal interstitial pressure and sodium excretion during hilar lymphatic ligation. Am J Physiol. 1984;247:F344–51.

    CAS  PubMed  Google Scholar 

  33. Zhang T, Guan G, Liu G, Sun J, Chen B, Li X, et al. Disturbance of lymph circulation develops renal fibrosis in rats with or without contralateral nephrectomy. Nephrology (Carlton). 2008;13:128–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Hideko Noguchi for providing advice regarding immunohistochemical staining, and Dr Marguerite Elgin and Dr Karen Bysouth (http://www.edanzediting.co.jp) for providing editing assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Tsuruya.

Ethics declarations

Conflict of interest

Honoraria: Takanari Kitazono (Bayer Pharmaceutical Co., Bristol-Myers Squibb Co., Daiichi-Sankyo Co.), Kazuhiko Tsuruya (Chugai Pharmaceutical Co., Kyowa Hakko Kirin Co.). Donations: Takanari Kitazono (Astellas Pharma Inc., Daiichi-Sankyo Co., Eisai Co., Kyowa Hakko Kirin Co., Mitsubishi Tanabe Pharma Co., MSD K.K., Ono Pharmaceutical Co., Otsuka Pharmaceutical Co., Sanofi-Aventis Pharmaceutical Co., Takeda Pharmaceutical Co.), Kazuhiko Tsuruya (Chugai Pharmaceutical Co., Kyowa Hakko Kirin Co., Otsuka Pharmaceutical Co., Takeda Pharmaceutical Co.). Endowed department: Kazuhiko Tsuruya (Baxter).

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee at which the studies were conducted (IRB approval number 24-54) and with the declaration of Helsinki and the ethical guidelines for epidemiological studies issued by the Ministry of Health, Labour and Welfare of Japan.

Informed consent

Because data were retrospectively obtained from medical records, informed consent was not obtained in accordance with the above ethical guidelines.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuchimoto, A., Nakano, T., Hasegawa, S. et al. The potential role of perivascular lymphatic vessels in preservation of kidney allograft function. Clin Exp Nephrol 21, 721–731 (2017). https://doi.org/10.1007/s10157-016-1338-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-016-1338-9

Keywords

Navigation