Skip to main content

Advertisement

Log in

The urinary levels of prostanoid metabolites predict acute kidney injury in heterogeneous adult Japanese ICU patients: a prospective observational study

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Acute kidney injury (AKI) is frequently observed in critically ill patients in the intensive care unit (ICU) and is associated with increased mortality. Prostanoids regulate numerous biological functions, including hemodynamics and renal tubular transport. We herein investigated the ability of urinary prostanoid metabolites to predict the onset of AKI in critically ill adult patients.

Methods

The current study was conducted as a prospective observational study. Urine of patients admitted to the ICU at Okayama University Hospital was collected and the urinary levels of prostaglandin E2 (PGE2), PGI2 metabolite (2,3-dinor-6-OXO-PGF), thromboxane A2 (TXA2) metabolite (11-dehydro-TXB2) were determined.

Results

Of the 93 patients, 24 developed AKI (AKIN criteria). Surgical intervention (93, 75 %) was the leading cause of ICU admission. Overall, the ratio of the level of serum Cr on Day 1 after ICU admission to that observed at baseline positively correlated with the urinary 2,3-dinor-6-OXO-PGF/Cr (r = 0.57, p < 0.0001) and 11-dehydro-TXB2/Cr (r = 0.47, p < 0.0001) ratios. In 16 cases of de novo AKI, the urinary 2,3-dinor-6-OXO-PGF/Cr and 11-dehydro-TXB2/Cr values were significantly elevated compared with that observed in the non-AKI group, whereas the urinary PGE2/Cr values were not. The urinary 2,3-dinor-6-OXO-PGF/Cr ratio exhibited the best diagnostic and predictive performance among the prostanoid metabolites according to the receiver operating characteristic (ROC) analysis [ROC–area under the curve (AUC): 0.75].

Conclusions

Taken together, these results demonstrate that the urinary 2,3-dinor-6-OXO-PGF/Cr and 11-dehydro-TXB2/Cr ratios are associated with the subsequent onset of AKI and poor outcomes in adult heterogeneous ICU patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813–8.

    Article  CAS  PubMed  Google Scholar 

  2. Coca SG, Bauling P, Schifftner T, Howard CS, Teitelbaum I, Parikh CR. Contribution of acute kidney injury toward morbidity and mortality in burns: a contemporary analysis. Am J Kidney Dis. 2007;49(4):517–23.

    Article  PubMed  Google Scholar 

  3. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62(1):237–44.

    Article  CAS  PubMed  Google Scholar 

  4. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365(9466):1231–8.

    Article  CAS  PubMed  Google Scholar 

  5. Parikh CR, Jani A, Melnikov VY, Faubel S, Edelstein CL. Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis. 2004;43(3):405–14.

    Article  CAS  PubMed  Google Scholar 

  6. Farman N, Pradelles P, Bonvalet JP. PGE2, PGF2 alpha, 6-keto-PGF1 alpha, and TxB2 synthesis along the rabbit nephron. Am J Physiol. 1987;252(1 Pt 2):F53–9.

    CAS  PubMed  Google Scholar 

  7. Moncada S, Vane JR. Arachidonic acid metabolites and the interactions between platelets and blood-vessel walls. N Engl J Med. 1979;300(20):1142–7.

    Article  CAS  PubMed  Google Scholar 

  8. Yokoyama C, Yabuki T, Shimonishi M, Wada M, Hatae T, Ohkawara S, et al. Prostacyclin-deficient mice develop ischemic renal disorders, including nephrosclerosis and renal infarction. Circulation. 2002;106(18):2397–403.

    Article  CAS  PubMed  Google Scholar 

  9. Hsu YH, Chen CH, Hou CC, Sue YM, Cheng CY, Cheng TH, et al. Prostacyclin protects renal tubular cells from gentamicin-induced apoptosis via a PPARalpha-dependent pathway. Kidney Int. 2008;73(5):578–87.

    Article  CAS  PubMed  Google Scholar 

  10. Yamashita T, Shikata K, Matsuda M, Okada S, Ogawa D, Sugimoto H, et al. Beraprost sodium, prostacyclin analogue, attenuates glomerular hyperfiltration and glomerular macrophage infiltration by modulating ecNOS expression in diabetic rats. Diabetes Res Clin Pract. 2002;57(3):149–61.

    Article  CAS  PubMed  Google Scholar 

  11. Watanabe M, Nakashima H, Mochizuki S, Abe Y, Ishimura A, Ito K, et al. Amelioration of diabetic nephropathy in OLETF rats by prostaglandin I(2) analog, beraprost sodium. Am J Nephrol. 2009;30(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  12. Yamasaki H, Maeshima Y, Nasu T, Saito D, Tanabe K, Hirokoshi-Kawahara K, et al. Intermittent administration of a sustained-release prostacyclin analog ONO-1301 ameliorates renal alterations in a rat type 1 diabetes model. Prostaglandins Leukot Essent Fatty Acids. 2011;84(3–4):99–107.

    Article  CAS  PubMed  Google Scholar 

  13. Takenaka M, Machida N, Ida N, Satoh N, Kurumatani H, Yamane Y. Effect of beraprost sodium (BPS) in a new rat partial unilateral ureteral obstruction model. Prostaglandins Leukot Essent Fatty Acids. 2009;80(5–6):263–7.

    Article  CAS  PubMed  Google Scholar 

  14. Nasu T, Kinomura M, Tanabe K, Yamasaki H, Htay SL, Saito D, et al. Sustained-release prostacyclin analog ONO-1301 ameliorates tubulointerstitial alterations in a mouse obstructive nephropathy model. Am J Physiol Renal Physiol. 2012;302(12):F1616–29.

    Article  CAS  PubMed  Google Scholar 

  15. Bonvalet JP, Pradelles P, Farman N. Segmental synthesis and actions of prostaglandins along the nephron. Am J Physiol. 1987;253(3 Pt 2):F377–87.

    CAS  PubMed  Google Scholar 

  16. Breyer MD, Breyer RM. Prostaglandin E receptors and the kidney. Am J Physiol Renal Physiol. 2000;279(1):F12–23.

    CAS  PubMed  Google Scholar 

  17. Remuzzi G, FitzGerald GA, Patrono C. Thromboxane synthesis and action within the kidney. Kidney Int. 1992;41(6):1483–93.

    Article  CAS  PubMed  Google Scholar 

  18. Arima T, Ohata M, Matsuura M, Nakamura S, Matsumoto I, Hori T. Changes in urinary prostaglandins during cardiopulmonary bypass in man. Masui. 1989;38(7):908–12.

    CAS  PubMed  Google Scholar 

  19. Hayashida M, Hanaoka K, Shimada Y, Namiki A, Amaha K. The effect of low-rose prostaglandin E1 on circulation, respiration and body temperature during surgical anesthesia. Masui. 1997;46(3):363–72.

    CAS  PubMed  Google Scholar 

  20. Ladefoged J. Urinary prostaglandin E2 excretion in renal allotransplantation in man. Prostaglandins. 1987;34(4):611–8.

    Article  CAS  PubMed  Google Scholar 

  21. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56.

    Article  CAS  PubMed  Google Scholar 

  22. Bone RC, Sprung CL, Sibbald WJ. Definitions for sepsis and organ failure. Crit Care Med. 1992;20(6):724–6.

    Article  CAS  PubMed  Google Scholar 

  23. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.

    Article  CAS  PubMed  Google Scholar 

  24. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53(6):982–92.

    Article  CAS  PubMed  Google Scholar 

  26. Citerio G, Bakker J, Bassetti M, Benoit D, Cecconi M, Curtis JR, et al. Year in review in Intensive Care Medicine 2013: I. Acute kidney injury, ultrasound, hemodynamics, cardiac arrest, transfusion, neurocritical care, and nutrition. Intensive Care Med. 2014;40(2):147–59.

    Article  PubMed  Google Scholar 

  27. Mandelbaum T, Lee J, Scott DJ, Mark RG, Malhotra A, Howell MD, et al. Empirical relationships among oliguria, creatinine, mortality, and renal replacement therapy in the critically ill. Intensive Care Med. 2013;39(3):414–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Bonventre JV, Yang L. Kidney injury molecule-1. Curr Opin Crit Care. 2010;16(6):556–61.

    Article  PubMed  Google Scholar 

  29. Negishi K, Noiri E, Doi K, Maeda-Mamiya R, Sugaya T, Portilla D, et al. Monitoring of urinary L-type fatty acid-binding protein predicts histological severity of acute kidney injury. Am J Pathol. 2009;174(4):1154–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Spargias K, Adreanides E, Demerouti E, Gkouziouta A, Manginas A, Pavlides G, et al. Iloprost prevents contrast-induced nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. Circulation. 2009;120(18):1793–9.

    Article  CAS  PubMed  Google Scholar 

  31. Papanicolaou N, Hatziantoniou C, Bariety J. Selective inhibition of thromboxane synthesis partially protected while inhibition of angiotensin II formation did not protect rats against acute renal failure induced with glycerol. Prostaglandins Leukot Med. 1986;21(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  32. Arima T, Ueda K, Genda T, Omoto R, Matsumoto I, Hori T. Changes in urinary immunoreactive-TXB2 and 2,3-dinor TXB2 in man following cardiopulmonary bypass. Masui. 1989;38(4):512–6.

    CAS  PubMed  Google Scholar 

  33. Bolisetty S, Agarwal A. Urine albumin as a biomarker in acute kidney injury. Am J Physiol Renal Physiol. 2011;300(3):F626–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Yu Y, Jin H, Holder D, Ozer JS, Villarreal S, Shughrue P, et al. Urinary biomarkers trefoil factor 3 and albumin enable early detection of kidney tubular injury. Nat Biotechnol. 2010;28(5):470–7.

    Article  CAS  PubMed  Google Scholar 

  35. Ware LB, Johnson AC, Zager RA. Renal cortical albumin gene induction and urinary albumin excretion in response to acute kidney injury. Am J Physiol Renal Physiol. 2011;300(3):F628–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Doi K, Negishi K, Ishizu T, Katagiri D, Fujita T, Matsubara T, et al. Evaluation of new acute kidney injury biomarkers in a mixed intensive care unit. Crit Care Med. 2011;39(11):2464–9.

    Article  CAS  PubMed  Google Scholar 

  37. Waikar SS, Sabbisetti VS, Bonventre JV. Normalization of urinary biomarkers to creatinine during changes in glomerular filtration rate. Kidney Int. 2010;78(5):486–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Bonventre JV, Nemenoff R. Renal tubular arachidonic acid metabolism. Kidney Int. 1991;39(3):438–49.

    Article  CAS  PubMed  Google Scholar 

  39. Lin H, Hou CC, Cheng CF, Chiu TH, Hsu YH, Sue YM, et al. Peroxisomal proliferator-activated receptor-alpha protects renal tubular cells from doxorubicin-induced apoptosis. Mol Pharmacol. 2007;72(5):1238–45.

    Article  CAS  PubMed  Google Scholar 

  40. Majima N, Soen M, Minami T. Analysis of urinary prostaglandin metabolites in patients who underwent surgery under general anesthesia. Bull Osaka Med Coll. 2013;59(2):37–44.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Makiko Tani, Junya Matsumi, Yuichiro Toda and Kentaro Sugimoto (Dept. of Anesthesiology, Okayama Univ. Hospital) for collecting the clinical samples and Drs. Takashi Yorifuji, Kenei Sada and Hiroyuki Doi for their assistance in performing the statistical analysis.

Conflict of interests

Financial competing interests Prof. Yohei Maeshima belonged to endowed department by Chugai pharmaceutical, MSD, Boehringer ingelheim and Kawanishi Holdings. Prof. Hitoshi Sugiyama belongs to endowed department by Baxter. Prof. Hirofumi Makino is a consultant for AbbVie, Astellas and Teijin, receives speaker honoraria from Astellas, Boehringer-ingelheim, Chugai, Daiichi Sankyo, Dainippon Sumitomo, Kyowa Hakko Kirin, MSD, Novartis, Pfizer, Takeda, and Tanabe Mitsubishi, and receives grant support from Astellas, Boehringer-ingelheim, Daiichi Sankyo, Dainippon Sumitomo, Kyowa Hakko Kirin, Mochida, MSD, Novartis, Novo Nordisk, Pfizer, Takeda, and Tanabe Mitsubishi.

Non-financial competing interest None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohei Maeshima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 59 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ujike-Omori, H., Maeshima, Y., Kinomura, M. et al. The urinary levels of prostanoid metabolites predict acute kidney injury in heterogeneous adult Japanese ICU patients: a prospective observational study. Clin Exp Nephrol 19, 1024–1036 (2015). https://doi.org/10.1007/s10157-015-1092-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-015-1092-4

Keywords

Navigation