Skip to main content

Advertisement

Log in

Deficiency of endothelial nitric oxide signaling pathway exacerbates peritoneal fibrosis in mice

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Long-term peritoneal dialysis (PD) causes peritoneal dysfunction and structural alterations, eventually leading to peritoneal fibrosis. The endothelial nitric oxide synthase (eNOS)–NO signaling pathway contributes to the progression of organ fibrosis. However, it remains unknown whether NO signaling is involved in the process of peritoneal fibrosis. We evaluated the role of the eNOS–NO signaling pathway in the development of peritoneal fibrosis and whether stimulation of soluble guanylate cyclase (sGC), a downstream effector of NO, could attenuate peritoneal fibrosis.

Methods

We used wild-type (WT) and eNOS-deficient mice (eNOSKO). The mice underwent mechanical peritoneal stripping-induced peritoneal fibrosis at day 0. At 3, 7, 14, and 28 days after peritoneal stripping, the mice were killed. In some eNOSKO mice, the sGC stimulator Bay 41-2272 was administered by intraperitoneal injection.

Results

In WT mice, granulomatous tissue formation was observed in the submesothelial area at days 3 and 7. After day 7, the peritoneal membrane thickness gradually decreased and peritoneal tissue was repaired with leaving only slight fibrosis at day 28. However, eNOSKO mice demonstrated more progression of peritoneal fibrosis than WT mice at 28 days after peritoneal stripping. Expression of vimentin in the thickened peritoneum was prolonged after day 7 in eNOSKO mice. Treatment with Bay 41-2272 significantly attenuated peritoneal vimentin expression and fibrosis in the eNOSKO mice.

Conclusions

Disruption of the eNOS–NO signaling pathway exacerbates peritoneal fibrosis by delaying wound healing. sGC stimulation may be a useful therapy for prevention of peritoneal fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pastan S, Bailey J. Dialysis therapy. N Engl J Med. 1998;338:1428–37.

    Article  CAS  PubMed  Google Scholar 

  2. Gokal R, Mallick NP. Peritoneal dialysis. Lancet. 1999;353:823–8.

    Article  CAS  PubMed  Google Scholar 

  3. Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, Mackenzie RK, Williams GT. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol. 2002;13:470–9.

    PubMed  Google Scholar 

  4. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23:168–75.

    Article  CAS  PubMed  Google Scholar 

  5. Albina JE, Mills CD, Henry WL Jr, Caldwell MD. Temporal expression of different pathways of 1-arginine metabolism in healing wounds. J Immunol. 1990;144:3877–80.

    CAS  PubMed  Google Scholar 

  6. Lee PC, Salyapongse AN, Bragdon GA, Shears LL 2nd, Watkins SC, Edington HD, Billiar TR. Impaired wound healing and angiogenesis in eNOS-deficient mice. Am J Physiol. 1999;277:H1600–8.

    CAS  PubMed  Google Scholar 

  7. Luo JD, Wang YY, Fu WL, Wu J, Chen AF. Gene therapy of endothelial nitric oxide synthase and manganese superoxide dismutase restores delayed wound healing in type 1 diabetic mice. Circulation. 2004;110:2484–93.

    Article  CAS  PubMed  Google Scholar 

  8. Tie L, Li XJ, Wang X, Channon KM, Chen AF. Endothelium-specific GTP cyclohydrolase I overexpression accelerates refractory wound healing by suppressing oxidative stress in diabetes. Am J Physiol Endocrinol Metab. 2009;296:E1423–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Sun D, Wang Y, Liu C, Zhou X, Li X, Xiao A. Effects of nitric oxide on renal interstitial fibrosis in rats with unilateral ureteral obstruction. Life Sci. 2012;90:900–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kazakov A, Hall R, Jagoda P, Bachelier K, Muller-Best P, Semenov A, Lammert F, Bohm M, Laufs U. Inhibition of endothelial nitric oxide synthase induces and enhances myocardial fibrosis. Cardiovasc Res. 2013.

  11. van Guldener C, Janssen MJ, Lambert J, Steyn M, Donker AJ, Stehouwer CD. Endothelium-dependent vasodilatation is impaired in peritoneal dialysis patients. Nephrol Dial Transplant. 1998;13:1782–6.

    Article  PubMed  Google Scholar 

  12. Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, Smithies O. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 1996;93:13176–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Miyamoto T, Tamura M, Kabashima N, Serino R, Shibata T, Furuno Y, Miyazaki M, Baba R, Sato N, Doi Y, Okazaki M, Otsuji Y. An integrin-activating peptide, PHSRN, ameliorates inhibitory effects of conventional peritoneal dialysis fluids on peritoneal wound healing. Nephrol Dial Transplant. 2010;25:1109–19.

    Article  CAS  PubMed  Google Scholar 

  14. Nishi Y, Satoh M, Nagasu H, Kadoya H, Ihoriya C, Kidokoro K, Sasaki T, Kashihara N. Selective estrogen receptor modulation attenuates proteinuria-induced renal tubular damage by modulating mitochondrial oxidative status. Kidney Int. 2013;83:662–73.

    Article  CAS  PubMed  Google Scholar 

  15. Meuten T, Hickey A, Franklin K, Grossi B, Tobias J, Newman DR, Jennings SH, Correa M, Sannes PL. WNT7B in fibroblastic foci of idiopathic pulmonary fibrosis. Respir Res. 2012;13:62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kim YD, Park CH, Kim HS, Choi SK, Rew JS, Kim DY, Koh YS, Jeung KW, Lee KH, Lee JS, Juhng SW, Lee JH. Genetic alterations of Wnt signaling pathway-associated genes in hepatocellular carcinoma. J Gastroenterol Hepatol. 2008;23:110–8.

    Article  CAS  PubMed  Google Scholar 

  17. Li N, Xi Y, Tinsley HN, Gurpinar E, Gary BD, Zhu B, Li Y, Chen X, Keeton AB, Abadi AH, Moyer MP, Grizzle WE, Chang WC, Clapper ML, Piazza GA. Sulindac selectively inhibits colon tumor cell growth by activating the cGMP/PKG pathway to suppress Wnt/beta-catenin signaling. Mol Cancer Ther. 2013;12:1848–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Cooke JP, Losordo DW. Nitric oxide and angiogenesis. Circulation. 2002;105:2133–5.

    Article  PubMed  Google Scholar 

  19. Dumont O, Loufrani L, Henrion D. Key role of the NO-pathway and matrix metalloprotease-9 in high blood flow-induced remodeling of rat resistance arteries. Arterioscler Thromb Vasc Biol. 2007;27:317–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Schaffer MR, Tantry U, Thornton FJ, Barbul A. Inhibition of nitric oxide synthesis in wounds: pharmacology and effect on accumulation of collagen in wounds in mice. Eur J Surg. 1999;165:262–7.

    Article  CAS  PubMed  Google Scholar 

  21. Amadeu TP, Costa AM. Nitric oxide synthesis inhibition alters rat cutaneous wound healing. J Cutan Pathol. 2006;33:465–73.

    Article  PubMed  Google Scholar 

  22. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341:738–46.

    Article  CAS  PubMed  Google Scholar 

  23. Witte MB, Barbul A. General principles of wound healing. Surg Clin North Am. 1997;77:509–28.

    Article  CAS  PubMed  Google Scholar 

  24. Amadeu TP, Seabra AB, de Oliveira MG, Monte-Alto-Costa A. Nitric oxide donor improves healing if applied on inflammatory and proliferative phase. J Surg Res. 2008;149:84–93.

    Article  CAS  PubMed  Google Scholar 

  25. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol. 1999;277:C1–9.

    Article  CAS  PubMed  Google Scholar 

  26. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med. 1994;1:71–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003;112:1776–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Ignarro LJ, Cirino G, Casini A, Napoli C. Nitric oxide as a signaling molecule in the vascular system: an overview. J Cardiovasc Pharmacol. 1999;34:879–86.

    Article  CAS  PubMed  Google Scholar 

  29. Pyriochou A, Beis D, Koika V, Potytarchou C, Papadimitriou E, Zhou Z, Papapetropoulos A. Soluble guanylyl cyclase activation promotes angiogenesis. J Pharmacol Exp Ther. 2006;319:663–71.

    Article  CAS  PubMed  Google Scholar 

  30. Kotzki S, Roustit M, Arnaud C, Boutonnat J, Blaise S, Godin-Ribuot D, Cracowski JL. Anodal iontophoresis of a soluble guanylate cyclase stimulator induces a sustained increase in skin blood flow in rats. J Pharmacol Exp Ther. 2013;346:424–31.

    Article  CAS  PubMed  Google Scholar 

  31. Beyer C, Reich N, Schindler SC, Akhmetshina A, Dees C, Tomcik M, Hirth-Dietrich C, von Degenfeld G, Sandner P, Distler O, Schett G, Distler JH. Stimulation of soluble guanylate cyclase reduces experimental dermal fibrosis. Ann Rheum Dis. 2012;71:1019–26.

    Article  CAS  PubMed  Google Scholar 

  32. Ghofrani HA, D’Armini AM, Grimminger F, Hoeper MM, Jansa P, Kim NH, Mayer E, Simonneau G, Wilkins MR, Fritsch A, Neuser D, Weimann G, Wang C. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med. 2013;369:319–29.

    Article  CAS  PubMed  Google Scholar 

  33. Ishii Y, Sawada T, Shimizu A, Tojimbara T, Nakajima I, Fuchinoue S, Teraoka S. An experimental sclerosing encapsulating peritonitis model in mice. Nephrol Dial Transplant. 2001;16:1262–6.

    Article  CAS  PubMed  Google Scholar 

  34. Park SH, Kim YL, Lindholm B. Experimental encapsulating peritoneal sclerosis models: pathogenesis and treatment. Perit Dial Int. 2008;28(Suppl 5):S21–8.

    CAS  PubMed  Google Scholar 

  35. Hung KY, Huang JW, Chiang CK, Tsai TJ. Preservation of peritoneal morphology and function by pentoxifylline in a rat model of peritoneal dialysis: molecular studies. Nephrol Dial Transplant. 2008;23:3831–40.

    Article  CAS  PubMed  Google Scholar 

  36. Pletinck A, Vanholder R, Veys N, Van Biesen W. Protecting the peritoneal membrane: factors beyond peritoneal dialysis solutions. Nat Rev Nephrol. 2012;8:542–50.

    Article  CAS  PubMed  Google Scholar 

  37. Krediet RT, Zweers MM, van der Wal AC, Struijk DG. Neoangiogenesis in the peritoneal membrane. Perit Dial Int. 2000;20(Suppl 2):S19–25.

    PubMed  Google Scholar 

  38. Sherif AM, Nakayama M, Maruyama Y, Yoshida H, Yamamoto H, Yokoyama K, Kawakami M. Quantitative assessment of the peritoneal vessel density and vasculopathy in CAPD patients. Nephrol Dial Transplant. 2006;21:1675–81.

    Article  PubMed  Google Scholar 

  39. Margetts PJ, Bonniaud P. Basic mechanisms and clinical implications of peritoneal fibrosis. Perit Dial Int. 2003;23:530–41.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Research Project Grant from Kawasaki Medical School. We wish to thank Ms. Etsuko Yorimasa, Ms. Miki Ishihara, and Ms. Miyuki Yokohata for animal care, and Ms. Satomi Hanada, Ms. Keiko Satoh, and Ms. Yoshiko Shirakiya for help with in vitro experiments.

Disclosure

All the authors have declared no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Satoh.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadoya, H., Satoh, M., Nagasu, H. et al. Deficiency of endothelial nitric oxide signaling pathway exacerbates peritoneal fibrosis in mice. Clin Exp Nephrol 19, 567–575 (2015). https://doi.org/10.1007/s10157-014-1029-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-014-1029-3

Keywords

Navigation