Skip to main content
Log in

Influence of conversion from calcineurin inhibitors to everolimus on fibrosis, inflammation, tubular damage and vascular function in renal transplant patients

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Conversion from calcineurin inhibitor (CNI) to mTOR inhibitors may reduce and even halt the progression of chronic allograft dysfunction (CAD) which is the most important cause of renal allograft loss. We aimed to investigate the effects of conversion from CNI to everolimus on parameters of fibrosis, inflammation, glomerulotubular damage and vascular functions in renal transplant recipients.

Methods

Fifteen stable renal transplant recipients who were under CNI treatment (male/female 13/2, mean age 41 ± 10 years) were enrolled and switched to everolimus. Serum and urinary transforming growth factor-β (TGF-β), urinary neutrophil gelatinase-associated lipocalin (NGAL) and monocyte chemoattractant protein-1 (MCP-1) were measured as markers of fibrosis, tubular damage and inflammation. As parameters of vascular functions, pulse wave velocity (PWV), augmentation index (AIx), serum asymmetric dimethyl-arginine and fibroblast growth factor-23 (FGF-23) were measured. All these measurements were repeated at the 3rd month of conversion.

Results

Estimated GFR (52 ± 7–57 ± 11 ml/min/l.73 m2, p = 0.02) (was increased after conversion to everolimus. However, serum uric acid levels were significantly decreased (6.21 ± 1.21–5.50 ± 1.39 mg/dL, p = 0.01). Serum TGF-β levels (8727 ± 2897–1943 ± 365 pg/mL, p = 0.03) and urinary NGAL levels (26 ± 10–12 ± 2 ng/mg creatinine, p = 0.05) were significantly decreased. However, urinary MCP-1, FGF-23, PWV and AIx did not change. Urinary TGF-β was associated with urinary NGAL (r = 0.62, p = 0.01), urinary MCP-1 (r = 0.68, p = 0.005) and proteinuria (r = 0.50, p = 0.05).

Conclusion

Conversion from CNI to everolimus resulted in significant decreases of serum TGF-β and urinary NGAL which may represent less fibrosis and tubular damage. Association of urinary TGF-β with NGAL and MCP-1 suggests that tubular damage, fibrosis and inflammation may act together for progression of CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hariharan S, Johnson CP, Bresnahan BA, Taranto SE, McIntosh MJ, Stablein D. Improved graft survival after renal transplantation in the United States, 1988 to 1996. N Engl J Med. 2000;342(9):605–12.

    Article  CAS  PubMed  Google Scholar 

  2. Calne RY, Rolles K, White DJ, Thiru S, Evans DB, McMaster P, Dunn DC, Craddock GN, Henderson RG, Aziz S, Lewis P. Cyclosporin A initially as the only immunosuppressant in 34 recipients of cadaveric organs: 32 kidneys, 2 pancreases, and 2 livers. Lancet. 1979;2:1033–6.

    Article  CAS  PubMed  Google Scholar 

  3. Paul LC. Chronic allograft nephropathy: an update. Kidney Int. 1999;56(3):783–93.

    Article  CAS  PubMed  Google Scholar 

  4. Massy ZA, Guijarro C, Wiederkehr MR, Ma JZ, Kasiske BL. Chronic renal allograft rejection: Immunologic and nonimmunologic risk factors. Kidney Int. 1996;49:518–24.

    Article  CAS  PubMed  Google Scholar 

  5. Joannidès R, Monteil C, de Ligny BH, Westeel PF, Iacob M, Thervet E, Barbier S, Bellien J, Lebranchu Y, Seguin SG, Thuillez C, Godin M, Etienne I. Immunosuppressant regimen based on sirolimus decreases aortic stiffness in renal transplant recipients in comparison to cyclosporine. Am J Transpl. 2011;11(11):2414–22.

    Article  Google Scholar 

  6. Seckinger J, Sommerer C, Hinkel UP, Hoffmann O, Zeier M, Schwenger V. Switch of immunosuppression from cyclosporine A to everolimus: impact on pulse wave velocity in stable de-novo renal allograft recipients. J Hypertens. 2008;26(11):2213–9.

    Article  CAS  PubMed  Google Scholar 

  7. Yong K, Nguyen HD, Hii L, Chan DT, Boudville N, Messineo A, Lim EM, Dogra GK, Lim WH. Association of a change in immunosuppressive regimen with hemodynamic and inflammatory markers of cardiovascular disease after kidney transplantation. Am J Hypertens. 2013.

  8. Flechner SM, Kurian SM, Solez K, et al. De novo kidney transplantation without use of calcineurin inhibitors preserves renal structure and function at two years. Am J Transpl. 2004;4:1776–85.

    Article  CAS  Google Scholar 

  9. Bumbea V, Kamar N, Ribes D, Esposito L, Modesto A, Guitard J, Nasou G, Durand D, Rostaing L. Long-term results in renal transplant patients with allograft dysfunction after switching from calcineurin inhibitors to sirolimus. Nephrol Dial Transpl. 2005;20(11):2517–23.

    Article  CAS  Google Scholar 

  10. Stallone G, Di Paolo S, Schena A, Infante B, Grandiliano G, Battaglia M, Gesualdo L, Scehna FP. Early withdrawal of cyclosporine improves 1 year kidney graft structure and function in sirolimus treated patients. Transplantation. 2003;75:998–1003.

    Article  CAS  PubMed  Google Scholar 

  11. Ruiz JC, Campistol JM, Grinyo JM, Mota A, Prats D, Gutierrez JA, Henriques AC, Pinto JR, Garcia J, Morales JM, Gomez JM, Arias M. Early cyclosporine A withdrawal in kidney transplant recipients receiving sirolimus prevents progression of chronic pathologic allograft lesions. Transplantation. 2004;78:1312–8.

    Article  CAS  PubMed  Google Scholar 

  12. Pauca AL, O’Rourke MF, Kon ND. Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension. 2001;38:932–7.

    Article  CAS  PubMed  Google Scholar 

  13. Laurent S, Cockcroft J, Van BL, Boutouyrie P, Giannattasio C, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.

    Article  PubMed  Google Scholar 

  14. Weber T, Ammer M, Rammer M, Adji A, O’rourke MF, et al. Noninvasive determination of carotid-femoral pulse wave velocity depends critically on assessment of travel distance: a comparison with invasive measurement. J Hypertens. 2009;27:1624–30.

    Article  CAS  PubMed  Google Scholar 

  15. Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Allen RD, Chapman JR. The natural history of chronic allograft nephropathy. N Engl J Med. 2003;349(24):2326–33.

    Google Scholar 

  16. Klintmalm G, Bohman SO, Sundelin B, Wilczek H. Interstitial fibrosis in renal allografts after 12 to 46 months of cyclosporin treatment: beneficial effect of low doses in early post-transplantation period. Lancet. 1984;2:950–4.

    Article  CAS  PubMed  Google Scholar 

  17. Farnsworth A, Hall BM, Duggin GG, Horvath JS, Tiller DJ. Interstitial fibrosis in renal allografts in patients treated with cyclosporin. Lancet. 1984;2:1470–1.

    Article  CAS  PubMed  Google Scholar 

  18. Starzl TE, Fung J, Jordan M, Shapiro R, Tzakis A, McCauley J, Johnston J, Iwaki Y, Jain A, Alessiani M. Kidney transplantation under FK 506. JAMA. 1990;264:63–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Randhawa PS, Shapiro R, Jordan ML, Starzl TE, Demetris AJ. The histopathological changes associated with allograft rejection and drug toxicity in renal transplant recipients maintained on FK506. Clinical significance and comparison with cyclosporine. Am J SurgPathol. 1993;17:60–68.

    Google Scholar 

  20. Lassila M. Interaction of cyclosporine A and the renin angiotensin system; new perspectives. Curr Drug Metab. 2002;3:61–71.

    Article  CAS  PubMed  Google Scholar 

  21. Khanna A, Plummer M, Bromberek C, Bresnahan B, Hariharan S. Expression of TGF-β and fibrogenic genes in transplant recipients with tacrolimus and cyclosporine nephrotoxicity. Kidney Int. 2002;62:2257–63.

    Article  CAS  PubMed  Google Scholar 

  22. Vieira JM Jr, Noronha IL, Malheiros DM, Burdmann EA. Cyclosporine-induced interstitial fibrosis and arteriolar TGF-β expression with preserved renal blood flow. Transplantation. 1999;68:1746–53.

    Article  CAS  PubMed  Google Scholar 

  23. Feldman G, Kiely B, Martin N, Ryan G, McMorrow T, Ryan MP. Role for TGF-β in cyclosporine-induced modulation of renal epithelial barrier function. J Am Soc Nephrol. 2007;18:1662–71.

    Article  CAS  PubMed  Google Scholar 

  24. Border WA, Noble NA. Transforming growth factor β in tissue fibrosis. N Engl J Med. 1994;331:1286–92.

    Article  CAS  PubMed  Google Scholar 

  25. Wolf G. Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-β pathway. Kidney Int. 2006;70:1914–9.

    CAS  PubMed  Google Scholar 

  26. Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol. 2004;15:1–12.

    Article  CAS  PubMed  Google Scholar 

  27. Feldman G, Kiely B, Martin N, Ryan G, McMorrow T, Ryan MP. Role for TGF-β in cyclosporine-induced modulation of renal epithelial barrier function. J Am Soc Nephrol. 2007;18:1662–71.

    Article  CAS  PubMed  Google Scholar 

  28. Goc A, Choudhary M, Byzova TV, Somanath PR. TGFβ- and bleomycin-induced extracellular matrix synthesis is mediated through Akt and mammalian target of rapamycin [mTOR]. J Cell Physiol. 2011;226(11):3004–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Wu MJ, Wen MC, Chiu YT, Chiou YY, Shu KH, Tang MJ. Rapamycin attenuates unilateral ureteral obstruction-induced renal fibrosis. Kidney Int. 2006;69(11):2029–36.

    Article  CAS  PubMed  Google Scholar 

  30. Kurdián M, Herrero-Fresneda I, Lloberas N, Gimenez-Bonafe P, Coria V, Grande MT, Boggia J, Malacrida L, Torras J, Arévalo MA, González-Martínez F, López-Novoa JM, Grinyó J, Noboa O. Delayed mTOR inhibition with low dose of everolimus reduces TGFβ expression, attenuates proteinuria and renal damage in the renal mass reduction model. PLoS One. 2012;7(3):e32516.

    Google Scholar 

  31. Bolignano D, Donato V, Coppolino G, Campo S, Buemi A, Lacquaniti A, Buemi M. Neutrophil gelatinase-associated lipocalin [NGAL] as a marker of kidney damage. Am J Kidney Dis. 2008;52(3):595–605.

    Article  CAS  PubMed  Google Scholar 

  32. Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Chapman JR. Delta analysis of posttransplantation tubulointerstitial damage. Transplantation. 2004;78(3):434–41.

    Article  PubMed  Google Scholar 

  33. Wasilewska A, Zoch-Zwierz W, Taranta-Janusz K, Michaluk-Skutnik J. Neutrophil gelatinase-associated lipocalin [NGAL]: a new marker of cyclosporine nephrotoxicity? Pediatr Nephrol. 2010;25(5):889–97.

    Article  PubMed  Google Scholar 

  34. Dubiński B, Boratyńska M, Kopeć W, Szyber P, Patrzałek D, Klinger M. Activated cells in urine and monocyte chemotactic peptide-1 [MCP-1]–sensitive rejection markers in renal graft recipients. Transpl Immunol. 2008;18(3):203–7.

    Article  PubMed  Google Scholar 

  35. Asai T, Nakatani T, Yamanaka S, Tamada S, Kishimoto T, Tashiro K, Nakao T, Okamura M, Kim S, Iwao H, Miura K. Magnesium supplementation prevents experimental chronic cyclosporine a nephrotoxicity via renin-angiotensin system independent mechanism. Transplantation. 2002;74(6):784–91.

    Article  CAS  PubMed  Google Scholar 

  36. Abbate M, Zoja C, Remuzzi G. How does proteinuria cause progressive renal damage? J Am Soc Nephrol. 2006;17(11):2974–84.

    Article  CAS  PubMed  Google Scholar 

  37. Regateiro FS, Howie D, Cobbold SP, Waldmann H. TGF-β in transplantation tolerance. Curr Opin Immunol. 2011;23(5):660–9.

    Article  CAS  PubMed  Google Scholar 

  38. Budde K, Lehner F, Sommerer C, Arns W, Reinke P, Eisenberger U, Wüthrich RP, Scheidl S, May C, Paulus EM, Mühlfeld A, Wolters HH, Pressmar K, Stahl R, Witzke O, ZEUS Study Investigators. Conversion from cyclosporine to everolimus at 4.5 months posttransplant: 3-year results from the randomized ZEUS study. Am J Transpl. 2012;12(6):1528–40.

    Article  CAS  Google Scholar 

  39. Ekberg H, Tedesco-Silva H, Demirbas A, Vítko S, Nashan B, Gürkan A, Margreiter R, Hugo C, Grinyó JM, Frei U, Vanrenterghem Y, Daloze P, Halloran PF. Reduced exposure to calcineurin inhibitors in renal transplantation. ELITE Symph Study N Engl J Med. 2007;357(25):2562–75.

    Article  CAS  Google Scholar 

  40. Gill JS, Abichandani R, Kausz AT, Pereira BJ. Mortality after kidney transplant failure: The impact of non-immunologic factors. Kidney Int. 2002;62:1875–83.

    Article  PubMed  Google Scholar 

  41. Gómez-Marcos MA, Recio-Rodríguez JI, Patino-Alonso MC, Agudo-Conde C, Rodríguez-Sánchez E, Gómez-Sánchez L, Gómez-Sánchez M, García-Ortiz L. Relationship between uric acid and vascular structure and function in hypertensive patients and sex-related differences. Am J Hypertens. 2013;26(5):599–607.

    Article  PubMed  Google Scholar 

  42. Budde K, Becker T, Arns W, Sommerer C, Reinke P, Eisenberger U, Kramer S, Fischer W, Gschaidmeier H, Pietruck F, ZEUS Study Investigators. Everolimus-based, calcineurin-inhibitor-free regimen in recipients of de-novo kidney transplants: an open-label, randomised, controlled trial. Lancet. 2011;377(9768):837–47.

    Article  CAS  PubMed  Google Scholar 

  43. Perico N, Codreanu I, Caruso M, Remuzzi G. Hyperuricemia in kidney transplantation. Contrib Nephrol. 2005;147:124–31.

    CAS  PubMed  Google Scholar 

  44. Panwalkar A, Verstovsek S, Giles FJ. Mammalian target of rapamycin inhibition as therapy for hematologic malignancies. Cancer. 2004;100:657–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was presented in American Transplant Congress in 18–22 May 2013. This study has been supported by Istanbul University Research Foundation with grant number 2012/827-1068.

Conflict of interest

All the authors have declared no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaattin Yildiz.

About this article

Cite this article

Alpay, N., Ozkok, A., Caliskan, Y. et al. Influence of conversion from calcineurin inhibitors to everolimus on fibrosis, inflammation, tubular damage and vascular function in renal transplant patients. Clin Exp Nephrol 18, 961–967 (2014). https://doi.org/10.1007/s10157-014-0939-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-014-0939-4

Keywords

Navigation