Skip to main content

Advertisement

Log in

CCL2/CCR2 augments the production of transforming growth factor-beta1, type 1 collagen and CCL2 by human CD45-/collagen 1-positive cells under high glucose concentrations

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

The migration and activation of circulating profibrotic cells including fibrocytes by the action of the chemokine/chemokine receptor system has been implicated in pathological fibrogenesis. In the present study, the involvement of collagen 1 (Col1)-producing cells, CD45-positive/collagen-1-positive (CD45+/Col1+) cells originally named as fibrocytes via CC chemokine receptor 2 (CCR2), a cognate receptor of CCL2/monocyte chemoattractant protein, was examined in diabetic conditions.

Methods

Human CD45+/Col1+ cells originating from the peripheral blood of healthy volunteers were incubated with high concentrations of d-glucose or d-mannitol as an osmotic control for 12, 24 or 48 h. In addition, these cells were preincubated with CCL2 under high glucose concentrations. We also examined the effects of the inhibitors of glucose transporters (GLUTs), reactive oxygen species or CCR2 on the expression of transforming growth factor beta1 (TGF-β1), pro-α1 chain of Col1 (COL1A1), and CCL2.

Results

Stimulation of CD45+/Col1+ cells with high glucose concentrations increased the mRNA and protein levels of TGF-β1 and CCL2 and those of pro-COL1A1, and this effect was mediated in part by increased osmolality. Preincubation of the cells with cytochalasin B (a GLUT inhibitor) or N-acetylcysteine (an antioxidant) blocked the stimulatory effect of high glucose concentrations on these profibrotic molecules. In addition, preincubation of the cells with CCL2 enhanced the high glucose-induced upregulation of TGF-β1, pro-COL1A1 and CCL2 and migration of the cells, and this effect was partly inhibited by treatment with CCR2 inhibitors.

Conclusion

These results suggest that CD45+/Col1+ cells may be directly involved, in part through CCL2/CCR2 signaling, in the fibrotic process under diabetic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wada T, Shimizu M, Toyama T, Hara A, Kaneko S, Furuichi K. Clinical impact of albuminuria in diabetic nephropathy. Clin Ext Nephrol. 2012; 16(1): 96−101

    Google Scholar 

  2. Parving HH, Mauer M, Ritz E. Diabetic nephropathy. In: Brenner BM editor. The kidney, 7th ed. W. B. Saunders Company, Philadelphia, 2004. pp. 1777–1818.

  3. Qian Y, Feldman E, Pennathur S, Kretzler M, Brosius FC. From fibrosis to sclerosis. Mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes. 2008;57:1439–45.

    Article  PubMed  CAS  Google Scholar 

  4. Wada T, Furuichi K, Sakai N, Iwata Y, Yoshimoto K, Shimizu M, Takeda SI, Takasawa K, Yoshimura M, Kida H, Kobayashi KI, Mukaida N, Naito T, Matsushima K, Yokoyama H. Up-regulation of MCP-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int. 2000;58:1492–9.

    Article  PubMed  CAS  Google Scholar 

  5. Cooper ME. Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet. 1998;352:213–9.

    Article  PubMed  CAS  Google Scholar 

  6. Navarro-gonzalez JF, Mora-Fernandez C, Muros de Fuentes M, Garcia-Perez J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol. 2011;7:327–40.

    Article  PubMed  CAS  Google Scholar 

  7. Sakai N, Wada T, Furuichi K, Iwata Y, Yoshimoto K, Kitagawa K, Kokubo S, Kobayashi M, Hara A, Yamahana J, Okumura T, Takasawa K, Takeda S, Yoshimura M, Kida H, Yokoyama H. Involvement of extracellular signal-regulated kinase and p38 in human diabetic nephropathy. Am J Kidney Dis. 2005;45:54–65.

    Article  PubMed  CAS  Google Scholar 

  8. Wada T, Yokoyama H, Furuichi K, Kobayashi KI, Harada K, Naruto M, Su SB, Akiyama H, Mukaida N, Matsushima K. Intervention of crescentic glomerulonephritis by antibodies to monocyte chemotactic and activating factor (MCAF/MCP-1). FASEB J. 1996;10:1418–25.

    PubMed  CAS  Google Scholar 

  9. Wada T, Matsushima K, Kaneko S. The role of chemokines in glomerulonephritis. Front Biosci. 2008;13:3966–74.

    Article  PubMed  CAS  Google Scholar 

  10. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med. 1994;1:71–81.

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Wada T, Sakai N, Sakai Y, Matsushima K, Kaneko S, Furuichi K. Involvement of bone-marrow-derived cells in kidney fibrosis. Clin Exp Nephrol. 2011;15:8–13.

    Article  PubMed  Google Scholar 

  12. Moore BB, Kolodsick JE, Thannickal VJ, Cooke K, Moore TA, Hogaboam C, Wilke CA, Toews GB. CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. Am J Pathol. 2005;166:675–84.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Wada T, Sakai N, Matsushima K, Kaneko S. Fibrocytes: a new insight into kidney fibrosis. Kidney Int. 2007;72:269–73.

    Article  PubMed  CAS  Google Scholar 

  14. Sakai N, Wada T, Yokoyama H, Lipp M, Ueha S, Matsushima K, Kaneko S. Secondary lymphoid tissues chemokine (SLC/CCL21)/CCR7 signaling regulates fibrocytes in renal fibrosis. Proc Natl Acad Sci USA. 2006;103:14098–103.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Sakai N, Furuichi K, Shinozaki Y, Yamauchi H, Toyama T, Kitajima S, Okumura T, Kokubo S, Kobayashi M, Takasawa K, Takeda S, Yoshimura M, Kaneko S, Wada T. Fibrocytes are involved in the pathogenesis of human chronic kidney disease. Hum Pathol. 2010;41:672–8.

    Article  PubMed  CAS  Google Scholar 

  16. Pilling D, Fan T, Huang D, Kaul B, Gomer RH. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS One. 2009;4:e7475.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Reilkoff RA, Bucala R, Herzog EL. Fibrocytes: emerging effector cells in chronic inflammation. Nat Rev Immunol. 2011;11:427–35.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, Belperio JA, Keane MP, Strieter RM. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediates fibrosis. J Clin Invest. 2004;114:438–46.

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Sakai N, Wada T, Matsushima K, Bucala R, Iwai M, Horiuchi M, Kaneko S. The renin-angiotensin system contributes to renal fibrosis through regulation of fibrocytes. J Hypertens. 2008;26:780–90.

    Article  PubMed  CAS  Google Scholar 

  20. Lachaal M, Rampal AL, Lee W, Shi Y, Jung CY. GLUT1 transmembrane glucose pathway. Affinity labeling with a transportable d-glucose diazirine. J Biol Chem. 1996;271:5225–30.

    Article  PubMed  CAS  Google Scholar 

  21. Ito A, Suganami T, Yamauchi A, Degawa-Yamauchi M, Tanaka M, Kouyama R, Kobayashi Y, Nitta N, Yasuda K, Hirata Y, Kuziel WA, Takeya M, Kanegasaki S, Kamei Y, Ogawa Y. Role of CC chemokine receptor 2 in bone marrow cells in the recruitment of macrophages into obese adipose tissue. J Biol Chem. 2008;283:35715–23.

    Article  PubMed  CAS  Google Scholar 

  22. Sakai N, Wada T, Furuichi K, Shimizu K, Kokubo S, Hara A, Yamahana J, Okumura T, Matsushima K, Yokoyama H, Kaneko S. MCP-1/CCR2-dependent loop for fibrogenesis in human peripheral CD14-positive monocytes. J Leukoc Biol. 2006;79:555–63.

    Article  PubMed  CAS  Google Scholar 

  23. Kitagawa K, Wada T, Furuichi K, Hashimoto H, Ishiwata Y, Asano M, Takeya M, Kuziel WA, Matsushima K, Mukaida N, Yokoyama H. Blockade of CCR2 ameliorates progressive fibrosis in kidney. Am J Pathol. 2004;165:237–46.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Schröppel B, Fischereder M, Wiese P, Segerer S, Huber S, Kretzler M, Heiss P, Sitter T, Schlöndorff D. Expression of glucose transporters in human peritoneal mesothelial cells. Kidney Int. 1998;53:1278–87.

    Article  PubMed  Google Scholar 

  25. Strieter RM, Keeley EC, Hughes MA, Burdick MD, Mehrad B. The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of pulmonary fibrosis. J Leukoc Biol. 2009;86:1111–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Calder PC, Dimitriadis G, Newsholme P. Glucose metabolism in lymphoid and inflammatory cells and tissues. Curr Opin Clin Nutr Metab Care. 2007;10:531–40.

    Article  PubMed  CAS  Google Scholar 

  27. Maratou E, Dimitriadis G, Kollias A, Boutati E, Lambadiari V, Mitrou P, Raptis SA. Glucose transporter expression on the plasma membrane of resting and activated white blood cells. Eur J Clin Invest. 2007;37:282–90.

    Article  PubMed  CAS  Google Scholar 

  28. Takaishi H, Taniguchi T, Takahashi A, Ishikawa Y, Yokoyama M. High glucose accelerates MCP-1 production via p38 MAPK in vascular endothelial cells. Biochem Biophys Res Commun. 2003;305:122–8.

    Article  PubMed  CAS  Google Scholar 

  29. Shanmugam N, Reddy MA, Guha M, Natarajan R. High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes. 2003;52:1256–64.

    Article  PubMed  CAS  Google Scholar 

  30. Morohoshi M, Fujisawa K, Uchimura I, Numano F. Glucose-dependent interleukin-6 and tumor necrosis factor production by human peripheral blood monocytes in vitro. Diabetes. 1996;45:954–9.

    Article  PubMed  Google Scholar 

  31. Janssen U, Sowa E, Marchand P, Floege J, Phillips AO, Radeke HH. Differential expression of MCP-1 and its receptor CCR2 in glucose primed human mesangial cells. Nephron. 2002;92:797–806.

    Article  PubMed  CAS  Google Scholar 

  32. Wong TYH, Phillips AO, Witowski J, Topley N. Glucose-mediated induction of TGF-β1 and MCP-1 in mesothelial cells in vitro is osmolality and polyol pathway dependent. Kidney Int. 2003;62:1404–16.

    Article  Google Scholar 

  33. Mine S, Okada Y, Tanikawa T, Kawahara C, Tabata T, Tanaka Y. Increased expression levels of monocyte CCR2 and monocyte chemoattractant protein-1 in patients with diabetes mellitus. Biochem Biophys Res Commun. 2006;344:780–5.

    Article  PubMed  CAS  Google Scholar 

  34. Shin CS, Moon BS, Park KS, Kim SY, Park SJ, Chung MH, Lee HK. Serum 8-hydroxy-guanine levels are increased in diabetic patients. Diabetes Care. 2001;24:733–7.

    Article  PubMed  CAS  Google Scholar 

  35. Cvetković T, Mitić B, Lazarević G, Vlahović P, Antić S, Stefanović V. Oxidative parameters as possible urine markers in patients with diabetic nephropathy. J Diabetes Complicat. 2009;23:337–42.

    Article  PubMed  Google Scholar 

  36. Pedersen SF, Kapus A, Hoffmann EK. Osmosensory mechanisms in cellular and systemic volume regulation. J Am Soc Nephrol. 2011;22:1587–97.

    Article  PubMed  CAS  Google Scholar 

  37. Hong KM, Burdick MD, Phillips RJ, Heber D, Strieter RM. Characterization of human fibrocytes as circulating adipocyte progenitors and the formation of human adipose tissue in SCID mice. FASEB J. 2005;19:2029–31.

    PubMed  CAS  Google Scholar 

  38. Tarabra E, Giunti S, Barutta F, Salvidio G, Burt D, Deferrari G, Gambino R, Vergola D, Pinach S, Perin PC, Camussi G, Gruden G. Effect of the monocyte chemoattractant protein-1/CC chemokine receptor 2 system on nephrin expression in streptozotocin-treated mice and human cultured podocytes. Diabetes. 2009;58:2109–18.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Bellini A, Mattoli S. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest. 2007;87:858–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Corporation (JST); Takeda Science Foundation; the Ministry of Education, Science, Sports, and Culture; and Diabetic Nephropathy Research from the Ministry of Health, Labor and Welfare of Japan.

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Wada.

About this article

Cite this article

Hara, A., Sakai, N., Furuichi, K. et al. CCL2/CCR2 augments the production of transforming growth factor-beta1, type 1 collagen and CCL2 by human CD45-/collagen 1-positive cells under high glucose concentrations. Clin Exp Nephrol 17, 793–804 (2013). https://doi.org/10.1007/s10157-013-0796-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-013-0796-6

Keywords

Navigation