Skip to main content

Advertisement

Log in

Prognostic significance of left ventricular hypertrophy observed at dialysis initiation depends on the pre-dialysis use of erythropoiesis-stimulating agents

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Recent experimental studies suggest that erythropoietin promotes beneficial myocardial remodeling during left ventricular hypertrophy (LVH); however, such compensatory capacity may be limited due to insufficient erythropoietin production in chronic kidney disease patients. Thus, this study aimed to explore the effect of pre-dialysis erythropoiesis-stimulating agent (ESA) use on the prognostic significance of LVH in dialyzed patients.

Methods

This retrospective study included 404 consecutive patients who started dialysis between 2001 and 2009. The interaction of ESA with the association between left ventricular mass index (LVMI) observed at dialysis initiation and all-cause and cardiovascular mortality was analyzed at the end of 2010 using the Cox model.

Results

During a median follow-up of 36.5 months, 164 patients died, 31 of them from heart failure. The frequency of pre-dialysis ESA use was 58.7 % and median LVMI was 160.3 g/m2. Of interest, patients with the lowest tertile of LVMI had worse survival compared with those with each subsequent tertile. LVMI was inversely associated with all-cause mortality [hazard ratio (HR) 0.991, 95 % confidence interval (CI) 0.988–0.995, P = 0.000] after extensive adjustment including ejection fraction, whereas the prognostic value of LVMI for cardiovascular mortality was dependent on pre-dialysis ESA use [adjusted HR 1.010, 95 % CI 0.999–1.020, P = 0.065 for pre-dialysis ESA(+) and 0.978, 95 % CI 0.967–0.989, P = 0.000 for pre-dialysis ESA(−), respectively].

Conclusions

Our results suggest that reverse epidemiology may exist between LVH and mortality and that pre-dialysis ESA use may modify the prognostic significance of LVH observed at dialysis initiation for cardiovascular mortality in dialyzed patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Drueke TB, Locatelli F, Clyne N, Eckardt KU, Macdougall IC, Tsakiris D, et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med. 2006;355:2071–84.

    Article  PubMed  CAS  Google Scholar 

  2. Singh AK, Szczech L, Tang KL, Barnhart H, Sapp S, Wolfson M, et al. Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med. 2006;355:2085–98.

    Article  PubMed  CAS  Google Scholar 

  3. Pfeffer MA, Burdmann EA, Chen CY, Cooper ME, de Zeeuw D, Eckardt KU, et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Eng J Med. 2009;361:1–14.

    Article  Google Scholar 

  4. Besarab A, Bolton WK, Browne JK, Egrie JC, Nissenson AR, Okamoto DM, et al. The effect of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med. 1998;339:584–90.

    Article  PubMed  CAS  Google Scholar 

  5. Morishita E, Masuda S, Nagao M, Yasuda Y, Sasaki R. Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience. 1997;76:105–16.

    Article  PubMed  CAS  Google Scholar 

  6. Wright GL, Hanlon P, Amin K, Steenbergen C, Murphy E, Arcasoy MO. Erythropoietin receptor expression in adult rat cardiomyocytes in associated with an acute cardioprotective effect for recombinant erythropoietin during ischemia-reperfusion injury. FASEB J. 2004;18:1031–3.

    PubMed  CAS  Google Scholar 

  7. Westenfelder C, Biddle DL, Baranowski RL. Human, rat, and mouse kidney cells express functional erythropoietin receptors. Kidney Int. 1999;55:808–20.

    Article  PubMed  CAS  Google Scholar 

  8. Beleslin-Cokic BB, Cokic VP, Yu X, Weksler BB, Schechter AN, Noguchi CT. Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production by endothelial cells. Blood. 2004;104:2073–80.

    Article  PubMed  CAS  Google Scholar 

  9. Celik M, Gökmen N, Erbayraktar S, Akhisaroglu M, Konakc S, Ulukus C, et al. Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury. Proc Natl Acad Sci USA. 2002;99:2258–63.

    Article  PubMed  CAS  Google Scholar 

  10. Calvillo L, Latini R, Kajstura J, Leri A, Anversa P, Ghezzi P, et al. Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci USA. 2003;100:4802–6.

    Article  PubMed  CAS  Google Scholar 

  11. Naito Y, Tsujino T, Matsumoto M, Sakoda T, Ohyanagi M, Masuyama T. Adaptive response of the heart to long-term anemia induced by iron deficiency. Am J Physiol Heart Circ Physiol. 2009;296:H585–93.

    Article  PubMed  CAS  Google Scholar 

  12. Bahlmann FH, Song R, Boehm SM, Mengel M, von Wasielewski R, Lindschau C, et al. Low-dose therapy with the long-acting erythropoietin analogue darbepoetin alpha persistently activates endothelial Akt and attenuates progressive organ failure. Circulation. 2004;24:1006–12.

    Article  Google Scholar 

  13. Bahlmann FH, De Groot K, Spandau JM, Landry AL, Hertel B, Duckert T, et al. Erythropoietin regulates endothelial progenitor cells. Blood. 2004;103:921–6.

    Article  PubMed  CAS  Google Scholar 

  14. Foley RN, Parfrey PS, Harnett JD, Kent GM, Martin CJ, Murray DC, et al. Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int. 1995;47:186–92.

    Article  PubMed  CAS  Google Scholar 

  15. Levin A, Singer J, Thompson CR, Ross H, Lewis M. Prevalent left ventricular hypertrophy in the predialysis population: identifying opportunities for intervention. Am J Kidney Dis. 1996;27:347–54.

    Article  PubMed  CAS  Google Scholar 

  16. Levin A, Thompson CR, Ethier J, Carlisle EJF, Tobe S, Mendelssohn D, et al. Left ventricular mass index increase in early renal disease: impact of decline in hemoglobin. Am J Kidney Dis. 1999;34:125–34.

    Article  PubMed  CAS  Google Scholar 

  17. Paoletti E, Bellino D, Cassottana P, Rolla D, Cannella G. Left ventricular hypertrophy in nondiabetic predialysis CKD. Am J Kidney Dis. 2005;46:320–7.

    Article  PubMed  Google Scholar 

  18. Amann K, Wiest G, Zimmer G, Gretz N, Ritz E, Mall G. Reduced capillary density in the myocardium of uremic rats—a stereological study. Kidney Int. 1992;42:1079–85.

    Article  PubMed  CAS  Google Scholar 

  19. Torning J, Amann K, Ritz E, Nichols C, Zeier M, Mall G. Arteriolar wall thickening, capillary rarefaction and interstitial fibrosis in the heart of rats with renal failure: the effects of ramipril, nifedipine and moxonidine. J Am Soc Nephrol. 1996;7:667–75.

    Google Scholar 

  20. Mall G, Rambausek M, Neumeister A, Kollmar S, Vetterlein F, Ritz E. Myocardial interstitial fibrosis in experimental uremia: implications for cardiac compliance. Kidney Int. 1988;33:804–11.

    Article  PubMed  CAS  Google Scholar 

  21. Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest. 2005;115:2108–18.

    Article  PubMed  CAS  Google Scholar 

  22. Izumiya Y, Shiojima I, Sato K, Sawyer DB, Colucci WS, Walsh K. Vascular endothelial growth factor blockade promotes the transition from compensatory cardiac hypertrophy to failure in response to pressure overload. Hypertension. 2006;47:887–93.

    Article  PubMed  CAS  Google Scholar 

  23. Sano M, Minamino T, Toko H, Miyauchi H, Orimo M, Qin Y, et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature. 2007;446:444–8.

    Article  PubMed  CAS  Google Scholar 

  24. Asaumi Y, Kagaya Y, Takeda M, Yamaguchi N, Tada H, Ito K, et al. Protective role of endogeneous erythropoietin system in nonhematopoietic cells against pressure overload-induced left ventricular dysfunction in mice. Circulation. 2007;115:2022–32.

    Article  PubMed  CAS  Google Scholar 

  25. Silberberg JS, Barre PE, Prichard SS, Sniderman AD. Impact of left ventricular hypertrophy on survival in end-stage renal disease. Kidney Int. 1989;36:286–90.

    Article  PubMed  CAS  Google Scholar 

  26. Foley RN, Parfrey PS, Harnett JD, Kent GM, Murray DC, Barre PE. The prognostic importance of left ventricular geometry in uremic cardiomyopathy. J Am Soc Nephrol. 1995;5:2024–31.

    PubMed  CAS  Google Scholar 

  27. Parfrey PS, Foley RN, Harnett JD, Kent GM, Murray DC, Barre PE. Outcome and risk factors for left ventricular disorders in chronic uraemia. Nephrol Dial Transplant. 1996;11:1277–85.

    PubMed  CAS  Google Scholar 

  28. Eckardt KU, Scherhag A, Macdougall IC, Tsakiris D, Clyne N, Locatelli F, et al. Left ventricular geometry predicts cardiovascular outcomes associated with anemia correction in CKD. J Am Soc Nephrol. 2009;20:2651–60.

    Article  PubMed  CAS  Google Scholar 

  29. Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. J Am Soc Echocardiogr. 1989;2:358–67.

    PubMed  CAS  Google Scholar 

  30. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57:450–8.

    Article  PubMed  CAS  Google Scholar 

  31. Levy D, Savage DD, Garrison RJ, Anderson KM, Kannel WB, Castell WP. Echocardiographic criteria for left ventricular hypertrophy: the Framingham study. Am J Cardiol. 1987;59:956–60.

    Article  PubMed  CAS  Google Scholar 

  32. Pombo JF, Troy BL, Russell RO Jr. Left ventricular volumes and ejection fractions by echocardiography. Circulation. 1971;43:480–90.

    Article  PubMed  CAS  Google Scholar 

  33. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    Article  PubMed  CAS  Google Scholar 

  34. Schoenfeld D. Partial residuals for the proportional hazards model. Biometrika. 1982;69:51–5.

    Article  Google Scholar 

  35. Nakai S, Masakane I, Akiba T, Shigematsu T, Yamagata K, Watanabe Y, et al. Overview of regular dialysis treatment in Japan as of 31 December 2006. Ther Apher Dial. 2008;12:428–56.

    Article  PubMed  Google Scholar 

  36. Lopes AA, Bragg-Gresham JL, Ramirez SP, Andreucci VE, Akiba T, Saito A, et al. Prescription of antihypertensive agents to haemodialysis patients: time trend and associations with patients’ characteristics, country and survival in the DOPPS. Nephrol Dial Transplant. 2009;24:2809–16.

    Article  PubMed  CAS  Google Scholar 

  37. Chonchol M, Benderly M, Goldbourt U. Beta-blockers for coronary heart disease in chronic kidney disease. Nephrol Dial Transplant. 2008;23:2274–9.

    Article  PubMed  CAS  Google Scholar 

  38. Kalantar-Zadeh K, Block G, Humphreys MH, Kopple J. Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. Kidney Int. 2003;63:793–808.

    Article  PubMed  Google Scholar 

  39. Lifshitz L, Tabak G, Mittelman M, Gassmann M, Neumann D. Macrophages as novel targets for erythropoietin. Hematologica. 2010;95:1823–31.

    Article  CAS  Google Scholar 

  40. Furlani D, Klopsch C, Gabel R, Ugurlucan M, Pittermann E, Klee D, Wagner K, Li W, Wang W, Ong LL, Nizze H, Titze U, Lutzow K, Lendlein A, Steinhoff G, Ma N. Intracardiac erythropoietin injection reveals anti-inflammatory potential and improved cardiac functions detected by forced swim test. Transplant Proc. 2008;40:962–6.

    Article  PubMed  CAS  Google Scholar 

  41. Shushakova N, Park JK, Menne J, Fliser D. Chronic erythropoietin treatment affects different molecular pathways of diabetic cardiomyopathy in mouse. Eur J Clin Invest. 2009;39:755–60.

    Article  PubMed  CAS  Google Scholar 

  42. Hayashi T, Suzuki A, Shoji T, Togawa M, Okada N, Tsubakihara Y, et al. Cardiovascular effect of normalizing the hematocrit level during erythropoietin therapy in predialysis patients with chronic renal failure. Am J Kidney Dis. 2000;35:250–6.

    Article  PubMed  CAS  Google Scholar 

  43. Ayus JC, Go AS, Valderrabano F, Verde E, Garcia de Vinuesa S, Achinger SG, et al. Effects of erythropoietin on left ventricular hypertrophy in adults with severe chronic renal failure and hemoglobin <10 g/dl. Kidney Int. 2005;68:788–95.

    Article  PubMed  CAS  Google Scholar 

  44. Parfrey PS, Lauve M, Latremouille-Viau D, Lefebvre P. Erythropoietin therapy and left ventricular mass index in CKD and ESRD patients: meta-analysis. Clin J Am Soc Nephrol. 2009;4:755–62.

    Article  PubMed  CAS  Google Scholar 

  45. Singh AK. Dose TREAT give the boot to ESAs in the treatment of CKD anemia? J Am Soc Nephrol. 2010;21:2–6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the physicians and staff at the 34 community-based hemodialysis sites, especially Dr. Harumi Nagayama, Shuji Okazaki (Nagayama hospital), Hiromi Nogami, Motoki Ohno (Nogami Hospital), Takahiro Nishide, Keiji Mimura (Nishide Hospital), Issei Uematsu (Habara Hospital), Takehiro Tamai (Tamai Internal Medicine and Orthopedics Hospital), Yasushi Saika (Fujii Clinic) and Kinya Hanada (Daini-Nagisa Clinic).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terumasa Hayashi.

About this article

Cite this article

Hayashi, T., Kimura, T., Yasuda, K. et al. Prognostic significance of left ventricular hypertrophy observed at dialysis initiation depends on the pre-dialysis use of erythropoiesis-stimulating agents. Clin Exp Nephrol 17, 294–303 (2013). https://doi.org/10.1007/s10157-012-0705-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-012-0705-4

Keywords

Navigation