Skip to main content
Log in

Metabolomic profiling of the autosomal dominant polycystic kidney disease rat model

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Autosomal dominant polycystic kidney disease (ADPKD) is an inherited systemic disease characterized by renal cyst expansion, resulting in renal failure. With the progression of renal damage, the accumulation of uremic compounds is recently reported to subsequently cause further renal damage and hypertension. Finding uremic toxins and sensitive markers for detecting the early stage of ADPKD is necessary to clarify its pathophysiological process and to prevent its progression. The aim of this study was to analyze the profile of uremic retention solutes of ADPKD by capillary electrophoresis–mass spectrometry (CE-MS) using the Han:SPRD rat model.

Methods

Two hundred and ninety-seven cations and 190 anions were comprehensively analyzed by CE-MS in Han:SPRD rats and control rats.

Results

We found 21 cations and 19 anions that accumulated significantly in the heterozygous (Cy/+) ADPKD rat model compared with control rats. Among the compounds, increases in 5-methyl-2′-deoxycytidine, glucosamine, ectoine, allantoate, α-hydroxybenzoate, phenaceturate and 3-phenylpropionate and decreases in 2-deoxycytidine, decanoate and 10-hydroxydecanoate were newly identified in the ADPKD Cy/+ rats.

Conclusion

We identified uremic retention solutes in ADPKD Cy/+ rats. Compounds related to ADPKD could be useful markers for detecting the early stage of ADPKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Iglesias CG, Torres VE, Offord KP, Holley KE, Beard CM, Kurland LT. Epidemiology of adult polycystic kidney disease, Olmsted County, Minnesota: 1935–1980. Am J Kidney Dis. 1983;2:630–9.

    Article  CAS  PubMed  Google Scholar 

  2. Schrier RW. Optimal care of autosomal dominant polycystic kidney disease patients. Nephrology (Carlton). 2006;11:124–30.

    Article  CAS  Google Scholar 

  3. Vanholder R, Van Laecke S, Glorieux G. What is new in uremic toxicity? Pediatr Nephrol. 2008;23:1211–21.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Marescau B, Nagels G, Possemiers I, De Broe ME, Becaus I, Billiouw JM, Lornoy W, De Deyn PP. Guanidino compounds in serum and urine of nondialyzed patients with chronic renal insufficiency. Metabolism. 1997;46:1024–31.

    Article  CAS  PubMed  Google Scholar 

  5. Kielstein JT, Zoccali C. Asymmetric dimethylarginine: a novel marker of risk and a potential target for therapy in chronic kidney disease. Curr Opin Nephrol Hypertens. 2008;17:609–15.

    Article  CAS  PubMed  Google Scholar 

  6. Vanholder R, De Smet R, Glorieux G, Argiles A, Baurmeister U, Brunet P, Clark W, Cohen G, De Deyn PP, Deppisch R, Descamps-Latscha B, Henle T, Jorres A, Lemke HD, Massy ZA, Passlick-Deetjen J, Rodriguez M, Stegmayr B, Stenvinkel P, Tetta C, Wanner C, Zidek W. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 2003;63:1934–43.

    Article  CAS  PubMed  Google Scholar 

  7. Torremans A, Marescau B, Kranzlin B, Gretz N, Billiouw JM, Vanholder R, De Smet R, Bouwman K, Brouns R, De Deyn PP. Biochemical validation of a rat model for polycystic kidney disease: comparison of guanidino compound profile with the human condition. Kidney Int. 2006;69:2003–12.

    Article  CAS  PubMed  Google Scholar 

  8. Toyohara T, Suzuki T, Morimoto R, Akiyama Y, Souma T, Shiwaku HO, Takeuchi Y, Mishima E, Abe M, Tanemoto M, Masuda S, Kawano H, Maemura K, Nakayama M, Sato H, Mikkaichi T, Yamaguchi H, Fukui S, Fukumoto Y, Shimokawa H, Inui K, Terasaki T, Goto J, Ito S, Hishinuma T, Rubera I, Tauc M, Fujii-Kuriyama Y, Yabuuchi H, Moriyama Y, Soga T, Abe T. Slco4c1 transporter eliminates uremic toxins and attenuates hypertension and renal inflammation. J Am Soc Nephrol. 2009;20:2546–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Toyohara T, Akiyama Y, Suzuki T, Takeuchi Y, Mishima E, Tanemoto M, Momose A, Toki N, Sato H, Nakayama M, Hozawa A, Tsuji I, Ito S, Soga T, Abe T. Metabolomic profiling of uremic solutes in CKD patients. Hypertens Res. 2010;33:944–52.

    Article  PubMed  Google Scholar 

  10. Soga T, Ueno Y, Naraoka H, Ohashi Y, Tomita M, Nishioka T. Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem. 2002;74:2233–9.

    Article  CAS  PubMed  Google Scholar 

  11. Mikkaichi T, Suzuki T, Onogawa T, Tanemoto M, Mizutamari H, Okada M, Chaki T, Masuda S, Tokui T, Eto N, Abe M, Satoh F, Unno M, Hishinuma T, Inui K, Ito S, Goto J, Abe T. Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc Natl Acad Sci USA. 2004;101:3569–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schafer K, Gretz N, Bader M, Oberbaumer I, Eckardt KU, Kriz W, Bachmann S. Characterization of the Han:SPRD rat model for hereditary polycystic kidney disease. Kidney Int. 1994;46:134–52.

    Article  CAS  PubMed  Google Scholar 

  13. Nagao S, Ushijima T, Kasahara M, Yamaguchi T, Kusaka M, Matsuda J, Nagao M, Takahashi H. Closely linked polymorphic markers for determining the autosomal dominant allele (cy) in rat polycystic kidney disease. Biochem Genet. 1999;37:227–35.

    Article  CAS  PubMed  Google Scholar 

  14. Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T. Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res. 2003;2:488–94.

    Article  CAS  PubMed  Google Scholar 

  15. Soga T, Heiger DN. Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem. 2000;72:1236–41.

    Article  CAS  PubMed  Google Scholar 

  16. Soga T, Igarashi K, Ito C, Mizobuchi K, Zimmermann HP, Tomita M. Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry. Anal Chem. 2009;81(15):6165–74.

    Article  CAS  PubMed  Google Scholar 

  17. Levillain O, Marescau B, de Deyn PP. Guanidino compound metabolism in rats subjected to 20% to 90% nephrectomy. Kidney Int. 1995;47:464–72.

    Article  CAS  PubMed  Google Scholar 

  18. Pawlak D, Pawlak K, Malyszko J, Mysliwiec M, Buczko W. Accumulation of toxic products degradation of kynurenine in hemodialyzed patients. Int Urol Nephrol. 2001;33:399–404.

    Article  CAS  PubMed  Google Scholar 

  19. Pawlak D, Tankiewicz A, Buczko W. Kynurenine and its metabolites in the rat with experimental renal insufficiency. J Physiol Pharmacol. 2001;52:755–66.

    CAS  PubMed  Google Scholar 

  20. Swendseid ME, Wang M, Vyhmeister I, Chan W, Siassi F, Tam CF, Kopple JD. Amino acid metabolism in the chronically uremic rat. Clin Nephrol. 1975;3:240–6.

    CAS  PubMed  Google Scholar 

  21. Ceballos I, Chauveau P, Guerin V, Bardet J, Parvy P, Kamoun P, Jungers P. Early alterations of plasma free amino acids in chronic renal failure. Clin Chim Acta. 1990;188:101–8.

    Article  CAS  PubMed  Google Scholar 

  22. Amathieu R, Racine S, Triba M, Poloujadoff MP, Borron SW, Bouchemal N, Lapostolle F, Merouani M, Le Moyec L, Adnet F. Use of nuclear magnetic resonance spectroscopy to assess renal dysfunction after hypertonic-hyperoncotic resuscitation in rats. J Trauma. 2007;63:379–87.

    Article  PubMed  Google Scholar 

  23. Bain MA, Faull R, Fornasini G, Milne RW, Evans AM. Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrol Dial Transplant. 2006;21:1300–4.

    Article  CAS  PubMed  Google Scholar 

  24. Shimizu T, Fukagawa M, Kuroda T, Hata S, Iwasaki Y, Nemoto M, Shirai K, Yamauchi S, Margolin SB, Shimizu F, Kurokawa K. Pirfenidone prevents collagen accumulation in the remnant kidney in rats with partial nephrectomy. Kidney Int Suppl. 1997;63:S239–43.

    CAS  PubMed  Google Scholar 

  25. Hart W, Duursma SA, Visser WJ, Njio LK. The hydroxyproline content of plasma of patients with impaired renal function. Clin Nephrol. 1975;4:104–8.

    CAS  PubMed  Google Scholar 

  26. McGregor DO, Dellow WJ, Lever M, George PM, Robson RA, Chambers ST. Dimethylglycine accumulates in uremia and predicts elevated plasma homocysteine concentrations. Kidney Int. 2001;59:2267–72.

    Article  CAS  PubMed  Google Scholar 

  27. Evans AM, Faull RJ, Nation RL, Prasad S, Elias T, Reuter SE, Fornasini G. Impact of hemodialysis on endogenous plasma and muscle carnitine levels in patients with end-stage renal disease. Kidney Int. 2004;66:1527–34.

    Article  CAS  PubMed  Google Scholar 

  28. Deguchi T, Takemoto M, Uehara N, Lindup WE, Suenaga A, Otagiri M. Renal clearance of endogenous hippurate correlates with expression levels of renal organic anion transporters in uremic rats. J Pharmacol Exp Ther. 2005;314:932–8.

    Article  CAS  PubMed  Google Scholar 

  29. Farrell PC, Gotch FA, Peters JH, Berridge BJ Jr, Lam M. Binding of hippurate in normal plasma and in uremic plasma pre- and postdialysis. Nephron. 1978;20:40–6.

    Article  CAS  PubMed  Google Scholar 

  30. Niwa T, Ise M. Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J Lab Clin Med. 1994;124:96–104.

    CAS  PubMed  Google Scholar 

  31. DeBari VA, Frank O, Baker H, Needle MA. Water soluble vitamins in granulocytes, erythrocytes, and plasma obtained from chronic hemodialysis patients. Am J Clin Nutr. 1984;39:410–5.

    Article  CAS  PubMed  Google Scholar 

  32. Lee SH, Kim I, Chung BC. Increased urinary level of oxidized nucleosides in patients with mild-to-moderate Alzheimer’s disease. Clin Biochem. 2007;40:936–8.

    Article  CAS  PubMed  Google Scholar 

  33. Becker BF. Towards the physiological function of uric acid. Free Radic Biol Med. 1993;14:615–31.

    Article  CAS  PubMed  Google Scholar 

  34. Hwang SY, Shin JH, Hwang JS, Kim SY, Shin JA, Oh ES, Oh S, Kim JB, Lee JK, Han IO. Glucosamine exerts a neuroprotective effect via suppression of inflammation in rat brain ischemia/reperfusion injury. Glia. 2010;58:1881–92.

    Article  PubMed  Google Scholar 

  35. Roberts MF. Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst. 2005;1:5.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cachofeiro V, Goicochea M, de Vinuesa SG, Oubina P, Lahera V, Luno J. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int Suppl. 2008;74:S4–9.

    Article  Google Scholar 

  37. D’Hooge R, Raes A, Lebrun P, Diltoer M, Van Bogaert PP, Manil J, Colin F, De Deyn PP. N-methyl-d-aspartate receptor activation by guanidinosuccinate but not by methylguanidine: behavioural and electrophysiological evidence. Neuropharmacology. 1996;35:433–40.

    Article  PubMed  Google Scholar 

  38. Vanholder R, De Smet R. Pathophysiologic effects of uremic retention solutes. J Am Soc Nephrol. 1999;10:1815–23.

    CAS  PubMed  Google Scholar 

  39. Zoccali C, Benedetto FA, Maas R, Mallamaci F, Tripepi G, Malatino LS, Boger R. Asymmetric dimethylarginine, C-reactive protein, and carotid intima-media thickness in end-stage renal disease. J Am Soc Nephrol. 2002;13:490–6.

    Article  CAS  PubMed  Google Scholar 

  40. Fliser D, Kronenberg F, Kielstein JT, Morath C, Bode-Boger SM, Haller H, Ritz E. Asymmetric dimethylarginine and progression of chronic kidney disease: the mild to moderate kidney disease study. J Am Soc Nephrol. 2005;16:2456–61.

    Article  CAS  PubMed  Google Scholar 

  41. Wang D, Strandgaard S, Borresen ML, Luo Z, Connors SG, Yan Q, Wilcox CS. Asymmetric dimethylarginine and lipid peroxidation products in early autosomal dominant polycystic kidney disease. Am J Kidney Dis. 2008;51:184–91.

    Article  CAS  PubMed  Google Scholar 

  42. Zafar I, Tao Y, Falk S, McFann K, Schrier RW, Edelstein CL. Effect of statin and angiotensin-converting enzyme inhibition on structural and hemodynamic alterations in autosomal dominant polycystic kidney disease model. Am J Physiol Renal Physiol. 2007;293:F854–9.

    Article  CAS  PubMed  Google Scholar 

  43. Schrier RW. Renal volume, renin-angiotensin-aldosterone system, hypertension, and left ventricular hypertrophy in patients with autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2009;20:1888–93.

    Article  PubMed  Google Scholar 

  44. Patel V, Chowdhury R, Igarashi P. Advances in the pathogenesis and treatment of polycystic kidney disease. Curr Opin Nephrol Hypertens. 2009;18:99–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gile RD, Cowley BD Jr, Gattone VH 2nd, O’Donnell MP, Swan SK, Grantham JJ. Effect of lovastatin on the development of polycystic kidney disease in the Han:SPRD rat. Am J Kidney Dis. 1995;26:501–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the Ministry of Education, Science and Culture of Japan, the Yokoyama Clinical Pharmacology Foundation, and Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaaki Abe.

Additional information

T. Toyohara, T. Suzuki and Y. Akiyama contributed equally to this work.

About this article

Cite this article

Toyohara, T., Suzuki, T., Akiyama, Y. et al. Metabolomic profiling of the autosomal dominant polycystic kidney disease rat model. Clin Exp Nephrol 15, 676–687 (2011). https://doi.org/10.1007/s10157-011-0467-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-011-0467-4

Keywords

Navigation