Skip to main content

Advertisement

Log in

Elevated serum levels of interleukin-18 in patients with overt diabetic nephropathy: effects of miglitol

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Interleukin-18 (IL-18), a pro-inflammatory cytokine, is a predictor of cardiovascular and renal disease in diabetic patients. Postprandial hyperglycemia is one of the important factors contributing to an increase in the circulating pro-inflammatory cytokine levels. This study investigated the effect of miglitol, an α-glucosidase inhibitor, on postprandial hyperglycemia and IL-18 levels in diabetic patients with nephropathy.

Methods

Fifteen Japanese diabetic patients with persistent proteinuria and preserved renal function were recruited. The patients received 50 mg miglitol thrice daily after the baseline examinations and were followed up for 12 weeks. A meal tolerance test was performed on eight patients at baseline and week 12. The fasting miglitol concentration was measured in seven patients just before the meal tolerance test.

Results

There were no changes in the body weight, blood pressure, liver and renal function, and proteinuria from baseline to week 12. However, the levels of glycated hemoglobin and interleukin 18 significantly decreased from baseline to week 12. During the meal tolerance test, plasma glucose was significantly decreased 60 min after treatment with miglitol, whereas the serum concentration of insulin was not changed. Fasting and postprandial levels of IL-18 were significantly decreased from baseline to week 12. Serum miglitol concentrations showed a significantly negative correlation with eGFR (r = −0.82, p = 0.02). However, the serum miglitol concentrations did not changed during the course of this study.

Conclusion

Miglitol improved postprandial hyperglycemia and reduced serum IL-18 levels in patients with stage 3 diabetic nephropathy. Miglitol may therefore prevent atherosclerotic diseases and diabetic micro-vascular complications through decreasing glucose swings and/or the circulating IL-18 level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Laakso M. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes. 1999;48:937–42.

    Article  CAS  PubMed  Google Scholar 

  2. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology and management. JAMA. 2002;2002:2570–81.

    Article  Google Scholar 

  3. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 2003;63:225–32.

    Article  PubMed  Google Scholar 

  4. Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med. 1999;340:115–26.

    Article  CAS  PubMed  Google Scholar 

  5. Puren AJ, Fantuzzi G, Gu Y, Su MS, Dinarello CA. Interleukin-18 (IFNgamma-inducing factor) induces IL-8 and IL-1beta via TNFalpha production from non-CD14+ human blood mononuclear cells. J Clin Invest. 1998;101:711–21.

    Article  CAS  PubMed  Google Scholar 

  6. Zirlik A, Abdullah SM, Gerdes N, MacFarlane L, Schönbeck U, Khera A, et al. Interleukin-18, the metabolic syndrome, and subclinical atherosclerosis: results from the Dallas Heart Study. Arterioscler Thromb Vasc Biol. 2007;27:2043–9.

    Article  CAS  PubMed  Google Scholar 

  7. Everett BM, Bansal S, Rifai N, Buring JEPMR. Interleukin-18 and the risk of future cardiovascular disease among initially healthy women. Atherosclerosis. 2009;202:282–8.

    Article  CAS  PubMed  Google Scholar 

  8. Skopiński P, Rogala E, Duda-Król B, Lipińska A, Sommer E, Chorostowska-Wynimko J. Increased interleukin-18 content and angiogenic activity of sera from diabetic (Type 2) patients with background retinopathy. J Diabetes Complicat. 2005;19:335–8.

    Article  PubMed  Google Scholar 

  9. Nakamura A, Shikata K, Hiramatsu M, Nakatou T, Kitamura T, Wada J, et al. Serum interleukin-18 levels are associated with nephropathy and atherosclerosis in Japanese patients with type 2 diabetes. Diabetes Care. 2005;28:2890–5.

    Article  CAS  PubMed  Google Scholar 

  10. Araki S, Haneda M, Koya D, Sugimoto T, Isshiki K, Chin-Kanasaki M, et al. Predictive impact of elevated serum level of IL-18 for early renal dysfunction in type 2 diabetes: an observational follow-up study. Diabetologia. 2007;50:867–73.

    Article  CAS  PubMed  Google Scholar 

  11. Nathan DM, Buse JB, Davidson MB, Heine RJ, Holman RR, Sherwin R, et al. Management of hyperglycemia in Type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy. A consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2006;29:1963–72.

    Article  PubMed  Google Scholar 

  12. Ceriello A, Colagiuri S. International Diabetes Federation guideline for management of postmeal glucose: a review of recommendations. Diabet Med. 2008;25:1151–6.

    Article  CAS  PubMed  Google Scholar 

  13. Fischer CP, Perstrup LB, Berntsen A, Eskildsen P, Pedersen BK. Elevated plasma interleukin-18 is a marker of insulin-resistance in type 2 diabetic and non-diabetic humans. Clin Immunol. 2005;117:152–60.

    Article  CAS  PubMed  Google Scholar 

  14. Herder C, Schneitler S, Rathmann W, Haastert B, Schneitler H, Winkler H, et al. Low-grade inflammation, obesity, and insulin resistance in adolescents. J Clin Endocrinol Metab. 2007;92:4569–74.

    Article  CAS  PubMed  Google Scholar 

  15. Altinova AE, Yetkin I, Akbay E, Bukan N, Arslan M. Serum IL-18 levels in patients with type 1 diabetes: relations to metabolic control and microvascular complications. Cytokine. 2008;42:217–21.

    Article  CAS  PubMed  Google Scholar 

  16. Ahr HJ, Boberg M, Brendel E, Krause HP, Steinke W. Pharmacokinetics of miglitol Absorption, distribution, metabolism, and excretion following administration to rats, dogs, and man. Arzneimittelforschung. 1997;47:734–45.

    CAS  PubMed  Google Scholar 

  17. Guerrant GO, Moss CW. Determination of monosaccharides as aldononitrile, o-methyloxime, alditol, and cyclitol acetate derivatives by gas chromatography. Anal Chem. 1984;56:633–8.

    Article  CAS  Google Scholar 

  18. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    Article  CAS  PubMed  Google Scholar 

  19. Sowers JR, Epstein M, Frohlich ED. Diabetes, hypertension, and cardiovascular disease: an update. Hypertension. 2001;37:1053–9.

    CAS  PubMed  Google Scholar 

  20. Solomon CG. Reducing cardiovascular risk in type 2 diabetes. N Engl J Med. 2003;348:457–9.

    Article  PubMed  Google Scholar 

  21. Mallat Z, Corbaz A, Scoazec A, Besnard S, Lesèche G, Chvatchko Y, et al. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation. 2001;104:1598–603.

    Article  CAS  PubMed  Google Scholar 

  22. Welsh P, Woodward M, Rumley A, Lowe G. Associations of circulating TNFalpha and IL-18 with myocardial infarction and cardiovascular risk markers: the Glasgow Myocardial Infarction Study. Cytokine. 2009;47:143–7.

    Article  CAS  PubMed  Google Scholar 

  23. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115:1111–9.

    CAS  PubMed  Google Scholar 

  24. Dickhout JG, Krepinsky JC. Endoplasmic reticulum stress and renal disease. Antioxid Redox Signal. 2009;11:2341–52.

    Article  CAS  PubMed  Google Scholar 

  25. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20.

    Article  CAS  PubMed  Google Scholar 

  26. Vidal-Vanaclocha F, Fantuzzi G, Mendoza L, Fuentes AM, Anasagasti MJ, Martín J, et al. L-18 regulates IL-1β-dependent hepatic melanoma metastasis via vascular cell adhesion molecule-1. PNAS. 2000;97:734–9.

    Article  CAS  PubMed  Google Scholar 

  27. Berneis K, Rizzo M, Evans J, Rini GB, Spinas GA, Goedecke JH. Interleukin-18 levels are associated with low-density lipoproteins size. Eur J Clin Invest. 2010;40:54–5.

    Article  CAS  PubMed  Google Scholar 

  28. Porazko T, Kúzniar J, Kusztal M, Kúzniar TJ, Weyde W, Kuriata-Kordek M, et al. IL-18 is involved in vascular injury in end-stage renal disease patients. Nephrol Dial Transplant. 2009;24:589–96.

    Article  CAS  PubMed  Google Scholar 

  29. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ. 1999;12:703–13.

    Google Scholar 

  30. American Diabetes Association. Standards of medical care in diabetes––2009. Diabetes Care. 2009;2009(Suppl 1):S13–61.

    Article  Google Scholar 

  31. Charpentier G, Riveline JP, Varroud-Vial M. Management of drugs affecting blood glucose in diabetic patients with renal failure. Diabetes Metab. 2000;26(Suppl4):73–85.

    CAS  PubMed  Google Scholar 

  32. Baer DJ, Judd JT, Clevidence BA, Tracy RP. Dietary fatty acids affect plasma markers of inflammation in healthy men fed controlled diets: a randomized crossover study. Am J Clin Nutr. 2004;79:969–73.

    CAS  PubMed  Google Scholar 

  33. Ghanim H, Abuaysheh S, Sia CL, Korzeniewski K, Chaudhuri A, Fernandez-Real JM. Increase in plasma endotoxin concentrations and the expression of Toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: implications for insulin resistance. Diabetes Care. 2009;32:2281–7.

    Article  CAS  PubMed  Google Scholar 

  34. Arakawa M, Ebato C, Mita T, Fujitani Y, Shimizu T, Watada H, et al. Miglitol suppresses the postprandial increase in interleukin 6 and enhances active glucagon-like peptide 1 secretion in viscerally obese subjects. Metabolism. 2008;57:1299–306.

    Article  CAS  PubMed  Google Scholar 

  35. Assaloni R, Da Ros R, Quagliaro L, Piconi L, Maier A, Zuodar G, et al. Effects of S21403 (mitiglinide) on postprandial generation of oxidative stress and inflammation in type 2 diabetic patients. Diabetologia. 2005;48:1919–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Uzu.

About this article

Cite this article

Uzu, T., Yokoyama, H., Itoh, H. et al. Elevated serum levels of interleukin-18 in patients with overt diabetic nephropathy: effects of miglitol. Clin Exp Nephrol 15, 58–63 (2011). https://doi.org/10.1007/s10157-010-0343-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-010-0343-7

Keywords

Navigation