Skip to main content

Advertisement

Log in

Searching for novel intercellular signal-transducing molecules in the kidney and their clinical application

  • Review Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

In this review, isolation and characterization of several kidney-derived molecules are described, namely carbonic anhydrase XIV, cysteine-rich protein 61, and kidney–liver-specific immunoglobulin-like protein. Features of neutrophil gelatinase-associated lipocalin (LCN2 or human neutrophil lipocalin) as a kidney differentiation inducer and renal injury biomarker and also as an iron-carrier protein are also summarized. Furthermore, the concepts of forest fire theory and the biology of siderophore-binding proteins are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nakao K, Yasoda A, Ebihara K, Hosoda K, Mukoyama M. Translational research of novel hormones: lessons from animal models and rare human diseases for common human diseases. J Mol Med. 2009;87:1029–39.

    Article  CAS  PubMed  Google Scholar 

  2. Mukoyama M, Nakao K, Hosoda K, Suga S, Saito Y, Ogawa Y, et al. Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J Clin Invest. 1991;87:1402–12.

    Article  CAS  PubMed  Google Scholar 

  3. Tashiro K, Tada H, Heilker R, Shirozu M, Nakano T, Honjo T. Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science. 1993;261:600–3.

    Article  CAS  PubMed  Google Scholar 

  4. Mori K, Ogawa Y, Ebihara K, Tamura N, Tashiro K, Kuwahara T, et al. Isolation and characterization of CA XIV, a novel membrane-bound carbonic anhydrase from mouse kidney. J Biol Chem. 1999;274:15701–5.

    Article  CAS  PubMed  Google Scholar 

  5. Mori K, Ogawa Y, Tamura N, Ebihara K, Aoki T, Muro S, et al. Molecular cloning of a novel mouse aspartic protease-like protein that is expressed abundantly in the kidney. FEBS Lett. 1997;401:218–22.

    Article  CAS  PubMed  Google Scholar 

  6. Mori K, Ogawa Y, Ebihara K, Aoki T, Tamura N, Sugawara A, et al. Kidney-specific expression of a novel mouse organic cation transporter-like protein. FEBS Lett. 1997;417:371–4.

    Article  CAS  PubMed  Google Scholar 

  7. Brown D, Kumpulainen T, Roth J, Orci L. Immunohistochemical localization of carbonic anhydrase in postnatal and adult rat kidney. Am J Physiol. 1983;245:F110–8.

    CAS  PubMed  Google Scholar 

  8. Mori K, Ogawa Y, Ebihara K, Tamura N, Tashiro K, Sugawara A, et al. Cloning of a novel member of immunoglobulin superfamily from mouse kidney. J Am Soc Nephrol. 1998;9:427A (abstract).

    Google Scholar 

  9. Ichimura T, Asseldonk EJ, Humphreys BD, Gunaratnam L, Duffield JS, Bonventre JV. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest. 2008;118:1657–68.

    Article  CAS  PubMed  Google Scholar 

  10. Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S. Identification of Tim4 as a phosphatidylserine receptor. Nature. 2007;450:435–9.

    Article  CAS  PubMed  Google Scholar 

  11. Rees AJ, Kain R. Kim-1/Tim-1: from biomarker to therapeutic target? Nephrol Dial Transplant. 2008;23:3394–6.

    Article  CAS  PubMed  Google Scholar 

  12. Sawai K, Mori K, Mukoyama M, Sugawara A, Suganami T, Koshikawa M, et al. Angiogenic protein Cyr61 is expressed by podocytes in anti-Thy-1 glomerulonephritis. J Am Soc Nephrol. 2003;14:1154–63.

    Article  CAS  PubMed  Google Scholar 

  13. Belteki G, Haigh J, Kabacs N, Haigh K, Sison K, Costantini F, et al. Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline induction. Nucleic Acids Res. 2005;33:e51.

    Article  PubMed  Google Scholar 

  14. Mori K, Yang J, Barasch J. Ureteric bud controls multiple steps in the conversion of mesenchyme to epithelia. Semin Cell Dev Biol. 2003;14:209–16.

    Article  PubMed  Google Scholar 

  15. Barasch J, Yang J, Ware CB, Taga T, Yoshida K, Erdjument-Bromage H, et al. Mesenchymal to epithelial conversion in rat metanephros is induced by LIF. Cell. 1999;99:377–86.

    Article  CAS  PubMed  Google Scholar 

  16. Yang J, Goetz D, Li JY, Wang W, Mori K, Setlik D, et al. An iron delivery pathway mediated by a lipocalin. Mol Cell. 2002;10:1045–56.

    Article  CAS  PubMed  Google Scholar 

  17. Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell. 2002;10:1033–43.

    Article  CAS  PubMed  Google Scholar 

  18. Roosenberg JM 2nd, Lin YM, Lu Y, Miller MJ. Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr Med Chem. 2000;7:159–97.

    CAS  PubMed  Google Scholar 

  19. Mori K, Mukoyama M, Nakao K. Novel biological involvements of siderophore-binding proteins in hematopoiesis, cell differentiation, tissue injury, carcinogenesis and infections. Rinsho Ketsueki. 2009;50:519–26.

    PubMed  Google Scholar 

  20. Supavekin S, Zhang W, Kucherlapati R, Kaskel FJ, Moore LC, Devarajan P. Differential gene expression following early renal ischemia/reperfusion. Kidney Int. 2003;63:1714–24.

    Article  CAS  PubMed  Google Scholar 

  21. Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14:2534–43.

    Article  CAS  PubMed  Google Scholar 

  22. Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest. 2005;115:610–21.

    CAS  PubMed  Google Scholar 

  23. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365:1231–8.

    Article  CAS  PubMed  Google Scholar 

  24. Wagener G, Jan M, Kim M, Mori K, Barasch JM, Sladen RN, et al. Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery. Anesthesiology. 2006;105:485–91.

    Article  CAS  PubMed  Google Scholar 

  25. Mori K, Nakao K. Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage. Kidney Int. 2007;71:967–70.

    Article  CAS  PubMed  Google Scholar 

  26. Nickolas TL, O’Rourke MJ, Yang J, Sise ME, Canetta PA, Barasch N, et al. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann Intern Med. 2008;148:810–9.

    PubMed  Google Scholar 

  27. Kuwabara T, Mori K, Mukoyama M, Kasahara M, Yokoi H, Saito Y, et al. Urinary neutrophil gelatinase-associated lipocalin levels reflect damage to glomeruli, proximal tubules, and distal nephrons. Kidney Int. 2009;75:285–94.

    Article  CAS  PubMed  Google Scholar 

  28. Kasahara M, Mori K, Satoh N, Kuwabara T, Yokoi H, Shimatsu A, et al. Reduction in urinary excretion of neutrophil gelatinase-associated lipocalin by angiotensin receptor blockers in hypertensive patients. Nephrol Dial Transplant. 2009;24:2608–9.

    Article  CAS  PubMed  Google Scholar 

  29. Tojo A, Onozato ML, Kurihara H, Sakai T, Goto A, Fujita T. Angiotensin II blockade restores albumin reabsorption in the proximal tubules of diabetic rats. Hypertens Res. 2003;26:413–9.

    Article  CAS  PubMed  Google Scholar 

  30. Burne MJ, Panagiotopoulos S, Jerums G, Comper WD. Alterations in renal degradation of albumin in early experimental diabetes in the rat: a new factor in the mechanism of albuminuria. Clin Sci (Lond). 1998;95:67–72.

    Article  CAS  Google Scholar 

  31. Bolignano D, Lacquaniti A, Coppolino G, Donato V, Fazio MR, Nicocia G, et al. Neutrophil gelatinase-associated lipocalin as an early biomarker of nephropathy in diabetic patients. Kidney Blood Press Res. 2009;32:91–8.

    Article  CAS  PubMed  Google Scholar 

  32. Xu SY, Pauksen K, Venge P. Serum measurements of human neutrophil lipocalin (HNL) discriminate between acute bacterial and viral infections. Scand J Clin Lab Invest. 1995;55:125–31.

    Article  CAS  PubMed  Google Scholar 

  33. Carlson M, Raab Y, Sevéus L, Xu S, Hällgren R, Venge P. Human neutrophil lipocalin is a unique marker of neutrophil inflammation in ulcerative colitis and proctitis. Gut. 2002;50:501–6.

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Lam KS, Kraegen EW, Sweeney G, Zhang J, Tso AW, et al. Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Clin Chem. 2007;53:34–41.

    Article  CAS  PubMed  Google Scholar 

  35. Cho H, Kim JH. Lipocalin2 expressions correlate significantly with tumor differentiation in epithelial ovarian cancer. J Histochem Cytochem. 2009;57:513–21.

    Article  CAS  PubMed  Google Scholar 

  36. Mori K, Kuwabara T, Mukoyama M, Kasahara M, Yokoi H, Ogawa Y, et al. Urinary Ngal is a kidney injury biomarker which integrates information of damage in glomeruli, proximal tubules and distal nephrons (proposal of kidney biomarker’ology). J Hypertens. 2008;26:S211 (abstract).

    Google Scholar 

  37. Li JY, Ram G, Gast K, Chen X, Barasch K, Mori K, et al. Detection of intracellular iron by its regulatory effect. Am J Physiol Cell Physiol. 2004;287:C1547–59.

    Article  CAS  PubMed  Google Scholar 

  38. Hanai J, Mammoto T, Seth P, Mori K, Karumanchi SA, Barasch J, et al. Lipocalin 2 diminishes invasiveness and metastasis of Ras-transformed cells. J Biol Chem. 2005;280:13641–7.

    Article  CAS  PubMed  Google Scholar 

  39. Lee S, Lee J, Kim S, Park JY, Lee WH, Mori K, et al. A dual role of lipocalin 2 in the apoptosis and deramification of activated microglia. J Immunol. 2007;179:3231–41.

    CAS  PubMed  Google Scholar 

  40. Miharada K, Hiroyama T, Sudo K, Danjo I, Nagasawa T, Nakamura Y. Lipocalin 2-mediated growth suppression is evident in human erythroid and monocyte/macrophage lineage cells. J Cell Physiol. 2008;215(2):526–37.

    Article  CAS  PubMed  Google Scholar 

  41. Devireddy LR, Gazin C, Zhu X, Green MR. A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell. 2005;123:1293–305.

    Article  CAS  PubMed  Google Scholar 

  42. Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 2004;432:917–21.

    Article  CAS  PubMed  Google Scholar 

  43. Martineau AR, Newton SM, Wilkinson KA, Kampmann B, Hall BM, Nawroly N, et al. Neutrophil-mediated innate immune resistance to mycobacteria. J Clin Invest. 2007;117:1988–94.

    Article  CAS  PubMed  Google Scholar 

  44. Aujla SJ, Chan YR, Zheng M, Fei M, Askew DJ, Pociask DA, et al. L-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med. 2008;14:275–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Unfortunately we could not describe all the contributors and original papers in Ngal research. We would especially like to acknowledge Drs. J. Barasch (Columbia University), P. Devarajan (Cincinnati Children’s Hospital), and M. Kasahara, H. Yokoi, K. Sawai, and T. Kuwabara (Kyoto University) for their collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Mori.

About this article

Cite this article

Mori, K., Mukoyama, M. & Nakao, K. Searching for novel intercellular signal-transducing molecules in the kidney and their clinical application. Clin Exp Nephrol 14, 523–527 (2010). https://doi.org/10.1007/s10157-010-0320-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-010-0320-1

Keywords

Navigation