Skip to main content

Genotyping of skin and soft tissue infection (SSTI)-associated methicillin-resistant Staphylococcus aureus (MRSA) strains among outpatients in a teaching hospital in Japan: application of a phage-open reading frame typing (POT) kit

A Publisher's Erratum to this article was published on 22 January 2013

Abstract

We aimed to elucidate the current epidemiological features of outpatient skin and soft tissue infection (SSTI)-associated methicillin-resistant Staphylococcus aureus (MRSA) in Japan. Altogether, we evaluated the performance of a phage-open reading frame typing (POT) kit for genotyping these MRSA strains. We collected 57 MRSA strains from all outpatients with SSTIs attending a teaching hospital in Japan. Drug susceptibility measurement and genotyping including SCCmec typing, spa typing, multilocus sequence typing, pulsed-field gel electrophoresis, and commercial POT-kit were performed. The majority of strains (39 strains, 68 %) had the SCCmec-II element. Seventeen strains (30 %) with SCCmec-IV accounted for the second largest population. Strains with SCCmec-IV and SCCmec-V appeared multiclonal, and a predominance of Panton–Valentine leukocidin (PVL) gene-negative CC8/spa-CC008 strains, as well as the first isolate of an ST93 strain in Japan, was observed among them. Only one USA300 strain was identified. Strains with SCCmec-IV and SCCmec-V were significantly susceptible to antimicrobials. The PVL gene was found in 5 SCCmec-IV strains and 1 SCCmec-V strain. The POT-kit successfully predicted the SCCmec type in 54 strains (95 %), and typing by POT1 scores was highly concordant with SCCmec typing and spa typing. Moreover, three PVL-positive strains fell into a particular POT type (POT scores, 106–77–113). Simpson’s index of the POT-kit was 0.977. In conclusion, the present study clarified the multiclonal nature of outpatient SSTI-associated MRSA in a teaching hospital in Japan. These data also underscore the utility of the POT-kit for non-outbreak surveillance through its simple platform consisting of two multiplex PCRs without sequencing.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev. 2010;23:616–87.

    PubMed  Article  CAS  Google Scholar 

  2. Vandenesch F, Naimi T, Enright MC, Lina G, Nimmo GR, Heffernan H, et al. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton–Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis. 2003;9:978–84.

    PubMed  Article  Google Scholar 

  3. Deleo FR, Otto M, Kreiswirth BN, Chambers HF. Community-associated meticillin-resistant Staphylococcus aureus. Lancet. 2010;375:1557–68.

    PubMed  Article  Google Scholar 

  4. Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, McDougal LK, Carey RB, et al. Methicillin-resistant Staphylococcus aureus infections among patients in the emergency department. N Engl J Med. 2006;355:666–74.

    PubMed  Article  CAS  Google Scholar 

  5. Miller LG, Diep BA. Clinical practice: colonization, fomites, and virulence: rethinking the pathogenesis of community-associated methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis. 2008;46:752–60.

    PubMed  Article  CAS  Google Scholar 

  6. Reyes J, Rincon S, Diaz L, Panesso D, Contreras GA, Zurita J, et al. Dissemination of methicillin-resistant Staphylococcus aureus USA300 sequence type 8 lineage in Latin America. Clin Infect Dis. 2009;49:1861–7.

    PubMed  Article  CAS  Google Scholar 

  7. Arias CA, Rincon S, Chowdhury S, Martinez E, Coronell W, Reyes J, et al. MRSA USA300 clone and VREF: a U.S.–Colombian connection? N Engl J Med. 2008;359:2177–9.

    PubMed  Article  CAS  Google Scholar 

  8. Larsen A, Stegger M, Goering R, Sorum M, Skov R. Emergence and dissemination of the methicillin-resistant Staphylococcus aureus USA300 clone in Denmark (2000–2005). Euro Surveill. 2007;12:22–4.

    Google Scholar 

  9. Tenover FC, Tickler IA, Goering RV, Kreiswirth BN, Mediavilla JR, Persing DH. Characterization of nasal and blood culture isolates of methicillin-resistant Staphylococcus aureus from patients in United States hospitals. Antimicrob Agents Chemother. 2012;56:1324–30.

    PubMed  Article  CAS  Google Scholar 

  10. Chua K, Laurent F, Coombs G, Grayson ML, Howden BP. Antimicrobial resistance: not community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA)! A clinician’s guide to community MRSA—its evolving antimicrobial resistance and implications for therapy. Clin Infect Dis. 2011;52:99–114.

    PubMed  Article  Google Scholar 

  11. Otter JA, French GL. Molecular epidemiology of community-associated meticillin-resistant Staphylococcus aureus in Europe. Lancet Infect Dis. 2010;10:227–39.

    PubMed  Article  Google Scholar 

  12. Hisata K, Ito T, Matsunaga N, Komatsu M, Jin J, Li S, et al. Dissemination of multiple MRSA clones among community-associated methicillin-resistant Staphylococcus aureus infections from Japanese children with impetigo. J Infect Chemother. 2011;17:609–21.

    PubMed  Article  Google Scholar 

  13. Higuchi W, Mimura S, Kurosawa Y, Takano T, Iwao Y, Yabe S, et al. Emergence of the community-acquired methicillin-resistant Staphylococcus aureus USA300 clone in a Japanese child, demonstrating multiple divergent strains in Japan. J Infect Chemother. 2010;16:292–7.

    PubMed  Article  CAS  Google Scholar 

  14. Yamamoto T, Nishiyama A, Takano T, Yabe S, Higuchi W, Razvina O, et al. Community-acquired methicillin-resistant Staphylococcus aureus: community transmission, pathogenesis, and drug resistance. J Infect Chemother. 2010;16:225–54.

    PubMed  Article  Google Scholar 

  15. Yamaguchi T, Nakamura I, Chiba K, Matsumoto T. Epidemiological and microbiological analysis of community-associated methicillin-resistant Staphylococcus aureus strains isolated from a Japanese hospital. Jpn J Infect Dis. 2012;65:175–8.

    PubMed  CAS  Google Scholar 

  16. Yabe S, Takano T, Higuchi W, Mimura S, Kurosawa Y, Yamamoto T. Spread of the community-acquired methicillin-resistant Staphylococcus aureus USA300 clone among family members in Japan. J Infect Chemother. 2010;16:372–4.

    PubMed  Article  Google Scholar 

  17. Mine Y, Higuchi W, Taira K, Nakasone I, Tateyama M, Yamamoto T, et al. Nosocomial outbreak of multidrug-resistant USA300 methicillin-resistant Staphylococcus aureus causing severe furuncles and carbuncles in Japan. J Dermatol. 2011;38:1167–71.

    PubMed  Article  CAS  Google Scholar 

  18. Nagao M, Iinuma Y, Suzuki M, Matsushima A, Takakura S, Ito Y, et al. First outbreak of methicillin-resistant Staphylococcus aureus USA300 harboring the Panton-Valentine leukocidin genes among Japanese health care workers and hospitalized patients. Am J Infect Control. 2010;38:e37–9.

    PubMed  Article  Google Scholar 

  19. Iwao Y, Ishii R, Tomita Y, Shibuya Y, Takano T, Hung WC, et al. The emerging ST8 methicillin-resistant Staphylococcus aureus clone in the community in Japan: associated infections, genetic diversity, and comparative genomics. J Infect Chemother. 2012;18:228–40.

    PubMed  Article  Google Scholar 

  20. Ozaki K, Takano M, Higuchi W, Takano T, Yabe S, Nitahara Y, et al. Genotypes, intrafamilial transmission, and virulence potential of nasal methicillin-resistant Staphylococcus aureus from children in the community. J Infect Chemother. 2009;15:84–91.

    PubMed  Article  CAS  Google Scholar 

  21. Takizawa Y, Taneike I, Nakagawa S, Oishi T, Nitahara Y, Iwakura N, et al. A Panton–Valentine leucocidin (PVL)-positive community-acquired methicillin-resistant Staphylococcus aureus (MRSA) strain, another such strain carrying a multiple-drug resistance plasmid, and other more-typical PVL-negative MRSA strains found in Japan. J Clin Microbiol. 2005;43:3356–63.

    PubMed  Article  CAS  Google Scholar 

  22. Yanagihara K, Araki N, Watanabe S, Kinebuchi T, Kaku M, Maesaki S, et al. Antimicrobial susceptibility and molecular characteristics of 857 methicillin-resistant Staphylococcus aureus isolates from 16 medical centers in Japan (2008–2009): nationwide survey of community-acquired and nosocomial MRSA. Diagn Microbiol Infect Dis. 2012;72:253–7.

    PubMed  Article  CAS  Google Scholar 

  23. Motoshima M, Yanagihara K, Morinaga Y, Matsuda J, Sugahara K, Yamada Y, et al. Genetic diagnosis of community-acquired MRSA: a multiplex real-time PCR method for Staphylococcal cassette chromosome mec typing and detecting toxin genes. Tohoku J Exp Med. 2010;220:165–70.

    PubMed  Article  CAS  Google Scholar 

  24. Kawaguchiya M, Urushibara N, Kuwahara O, Ito M, Mise K, Kobayashi N. Molecular characteristics of community-acquired methicillin-resistant Staphylococcus aureus in Hokkaido, northern main island of Japan: identification of sequence types 6 and 59 Panton–Valentine leucocidin-positive community-acquired methicillin-resistant Staphylococcus aureus. Microb Drug Resist. 2011;17:241–50.

    PubMed  Article  CAS  Google Scholar 

  25. Suzuki M, Tawada Y, Kato M, Hori H, Mamiya N, Hayashi Y, et al. Development of a rapid strain differentiation method for methicillin-resistant Staphylococcus aureus isolated in Japan by detecting phage-derived open-reading frames. J Appl Microbiol. 2006;101:938–47.

    PubMed  Article  CAS  Google Scholar 

  26. Nada T, Yagi T, Ohkura T, Morishita Y, Baba H, Ohta M, et al. Usefulness of phage open-reading frame typing method in an epidemiological study of an outbreak of methicillin-resistant Staphylococcus aureus infections. Jpn J Infect Dis. 2009;62:386–9.

    PubMed  Google Scholar 

  27. O’Sullivan MV, Kong F, Sintchenko V, Gilbert GL. Rapid identification of methicillin-resistant Staphylococcus aureus transmission in hospitals by use of phage-derived open reading frame typing enhanced by multiplex PCR and reverse line blot assay. J Clin Microbiol. 2010;48:2741–8.

    PubMed  Article  Google Scholar 

  28. Moriyama H, Matsuda C, Shibata H, Nishimura N, Hirose M, Nagai A. Usefulness of phage ORF typing, a rapid genotyping method as a molecular and epidemiological method for detecting methicillin-resistant Staphylococcus aureus. Kansenshogaku Zasshi. 2012;86:115–20.

    PubMed  Google Scholar 

  29. Ogata K, Narimatsu H, Suzuki M, Higuchi W, Yamamoto T, Taniguchi H. Commercially distributed meat as a potential vehicle for community-acquired methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol. 2012;78:2797–802.

    PubMed  Article  CAS  Google Scholar 

  30. Clinical Laboratory and Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 8th ed. CLSI document M7-A8. Wayne, PA: CLSI; 2009

  31. Clinical Laboratory and Standards Institute. Performance standards for antimicrobial susceptibility testing; 19th informational supplement. CLSI document M100-S19. Wayne, PA: CLSI; 2009.

  32. Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, et al. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet. 2006;367:731–9.

    PubMed  Article  CAS  Google Scholar 

  33. Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H, Forey F, et al. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun. 2002;70:631–41.

    PubMed  Article  CAS  Google Scholar 

  34. Suzuki M, Matsumoto M, Takahashi M, Hayakawa Y, Minagawa H. Identification of the clonal complexes of Staphylococcus aureus strains by determination of the conservation patterns of small genomic islets. J Appl Microbiol. 2009;107:1367–74.

    PubMed  Article  CAS  Google Scholar 

  35. Kondo Y, Ito T, Ma XX, Watanabe S, Kreiswirth BN, Etienne J, et al. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother. 2007;51:264–74.

    PubMed  Article  CAS  Google Scholar 

  36. Aires-de-Sousa M, Boye K, de Lencastre H, Deplano A, Enright MC, Etienne J, et al. High interlaboratory reproducibility of DNA sequence-based typing of bacteria in a multicenter study. J Clin Microbiol. 2006;44:619–21.

    PubMed  Article  CAS  Google Scholar 

  37. Mellmann A, Weniger T, Berssenbrugge C, Rothganger J, Sammeth M, Stoye J, et al. Based Upon Repeat Pattern (BURP): an algorithm to characterize the long-term evolution of Staphylococcus aureus populations based on spa polymorphisms. BMC Microbiol. 2007;7:98.

    PubMed  Article  Google Scholar 

  38. Strommenger B, Braulke C, Heuck D, Schmidt C, Pasemann B, Nubel U, et al. spa typing of Staphylococcus aureus as a frontline tool in epidemiological typing. J Clin Microbiol. 2008;46:574–81.

    PubMed  Article  CAS  Google Scholar 

  39. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol. 2000;38:1008–15.

    PubMed  CAS  Google Scholar 

  40. Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol. 2004;186:1518–30.

    PubMed  Article  CAS  Google Scholar 

  41. Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol. 1988;26:2465–6.

    PubMed  CAS  Google Scholar 

  42. Tenover FC, Goering RV. Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology. J Antimicrob Chemother. 2009;64:441–6.

    PubMed  Article  CAS  Google Scholar 

  43. Coombs GW, Nimmo GR, Bell JM, Huygens F, O’Brien FG, Malkowski MJ, et al. Genetic diversity among community methicillin-resistant Staphylococcus aureus strains causing outpatient infections in Australia. J Clin Microbiol. 2004;42:4735–43.

    PubMed  Article  CAS  Google Scholar 

  44. Boyle-Vavra S, Ereshefsky B, Wang CC, Daum RS. Successful multiresistant community-associated methicillin-resistant Staphylococcus aureus lineage from Taipei, Taiwan, that carries either the novel Staphylococcal chromosome cassette mec (SCCmec) type VT or SCCmec type IV. J Clin Microbiol. 2005;43:4719–30.

    PubMed  Article  CAS  Google Scholar 

  45. Coombs GW, Monecke S, Ehricht R, Slickers P, Pearson JC, Tan HL, et al. Differentiation of clonal complex 59 community-associated methicillin-resistant Staphylococcus aureus in Western Australia. Antimicrob Agents Chemother. 2010;54:1914–21.

    PubMed  Article  CAS  Google Scholar 

  46. Diep BA, Chambers HF, Graber CJ, Szumowski JD, Miller LG, Han LL, et al. Emergence of multidrug-resistant, community-associated, methicillin-resistant Staphylococcus aureus clone USA300 in men who have sex with men. Ann Intern Med. 2008;148:249–57.

    PubMed  Google Scholar 

  47. Shittu AO, Okon K, Adesida S, Oyedara O, Witte W, Strommenger B, et al. Antibiotic resistance and molecular epidemiology of Staphylococcus aureus in Nigeria. BMC Microbiol. 2011;11:92.

    PubMed  Article  CAS  Google Scholar 

  48. Uhlemann AC, Dumortier C, Hafer C, Taylor BS, Sanchez J, Rodriguez-Taveras C, et al. Molecular characterization of Staphylococcus aureus from outpatients in the Caribbean reveals the presence of pandemic clones. Eur J Clin Microbiol Infect Dis. 2012;31:505–11.

    PubMed  Article  Google Scholar 

  49. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52:e18–55.

    PubMed  Article  Google Scholar 

  50. Fossum Moen AE, Saltyte Benth J, Alm-Kristiansen K, Bukholm G. Exotoxin-encoding gene content in community-acquired and hospital-acquired methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect. 2009;15:1139–45.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the laboratory members for their technical and scientific assistance. This work was supported by Toho Project Research Grant No. 21-18 and No. 22-24 of Toho University School of Medicine.

Conflict of interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoo Saga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10156_2012_506_MOESM1_ESM.pdf

Supplemental Fig. 1. Supporting information for POT-kit. a Description of the commercially available POT-kit by the provider (Cica Geneus Staph POT KIT; Kanto Chemical Co.). b Expected SCCmec types predicted by the POT-kit. On the basis of the manufacturer’s leaflet issued with the POT-kit, we anticipated that the presence or absence of five targets, namely, POT1-1, POT1-2, POT1-3, POT1-4, and POT1-7, could predict SCCmec type from I to VI. The results obtained with the POT-kit were compared with those obtained by multiplex PCR using the method of Kondo et al. [35]. a POT scores are calculated as the sum of the presence of the target gene (1 if present, 0 if absent) multiplied by a specific POT coefficient. Therefore, the output of the POT-kit was a combination of three compressed scores, which reflect the presence or absence of 22 target elements in total. (PDF 445 kb)

10156_2012_506_MOESM2_ESM.pdf

Supplemental Fig. 2 Genetic profiles of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) in the present study. A total of 57 MRSA isolates from outpatients with skin and soft tissue infections (SSTIs) were collected for 1 year in a Japanese teaching hospital. a Discrepancy between the result of SCCmec typing by the POT-kit and that by the method of Kondo et al. [35]. (PDF 955 kb)

About this article

Cite this article

Maeda, T., Saga, T., Miyazaki, T. et al. Genotyping of skin and soft tissue infection (SSTI)-associated methicillin-resistant Staphylococcus aureus (MRSA) strains among outpatients in a teaching hospital in Japan: application of a phage-open reading frame typing (POT) kit. J Infect Chemother 18, 906–914 (2012). https://doi.org/10.1007/s10156-012-0506-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10156-012-0506-4

Keywords

  • Methicillin-resistant Staphylococcus aureus (MRSA)
  • Genotyping
  • Phage open-reading frame typing (POT)
  • Skin and soft tissue infection (SSTI)