Skip to main content

A practical approach estimating etiologic agents using real-time PCR in pediatric inpatients with community-acquired pneumonia

Abstract

To evaluate pathogens in pediatric inpatients with community-acquired pneumonia (CAP), an Acute Respiratory Diseases Study Group organized by ten Japanese medical institutions devised a rapid, reliable process based on real-time PCR results in nasopharyngeal swab samples plus admission blood test results. From April 2008 to April 2009, we enrolled 903 children with CAP based on chest radiographs and clinical findings who were hospitalized within 5 days of onset. Comprehensive real-time PCR was used to detect 6 bacteria and 11 respiratory viruses. The swab specimens also were used for bacterial cultures. After initial determination of presence or absence of viral and mycoplasmal infections, significant bacterial contributions were defined by bacterial identification, clinical efficacy of antimicrobial agent, and reference to blood test results. Children were stratified by age: below 1 year, 1 year, 2–5 years, or at least 6 years old. Among patients studied, 34.4 % were diagnosed with viral infection; 21.8 %, bacterial infection; 17.5 %, viral/bacterial co-infection; 5.9 %, mycoplasmal infection; 0.3 %, mycoplasmal/bacterial co-infection; and 1.7 %, viral/mycoplasmal co-infection. The remaining 18.4 % had unknown pathogens. Purely viral infection was suggested mainly in infants younger than 1 year; mycoplasmal infection typically occurred in children at least 6 years old. Our results suggest usefulness of real-time PCR for nasopharyngeal samples together with blood tests in estimating etiologic agents in clinical settings.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Jourdain S, Smeesters PR, Denis O, Dramaix M, Sputael V, Malaviolle X, et al. Differences in nasopharyngeal bacterial carriage in preschool children from different socio-economic origins. Clin Microbiol Infect. 2011;17:907–14.

    PubMed  Article  CAS  Google Scholar 

  2. Mahony J, Chong S, Merante F, Yaghoubian S, Sinha T, Lisle C, et al. Development of a respiratory virus panel test for detection of twenty human respiratory viruses by use of multiplex PCR and a fluid microbead-based assay. J Clin Microbiol. 2007;45:2965–70.

    PubMed  Article  CAS  Google Scholar 

  3. Morozumi M, Nakayama E, Iwata S, Aoki Y, Hasegawa K, Kobayashi R, et al. Simultaneous detection of pathogens in clinical samples from patients with community-acquired pneumonia by real-time PCR with pathogen-specific molecular beacon probes. J Clin Microbiol. 2006;44:1440–6.

    PubMed  Article  CAS  Google Scholar 

  4. Hamano-Hasegawa K, Morozumi M, Nakayama E, Chiba N, Murayama SY, Takayanagi R, et al. Comprehensive detection of causative pathogens using real-time PCR to diagnose pediatric community-acquired pneumonia. J Infect Chemother. 2008;14:424–32.

    PubMed  Article  CAS  Google Scholar 

  5. The committee for the guidelines in management of respiratory infectious diseases in children. In: Uehara S, Sunakawa K, editors. Guidelines for the management of respiratory infectious diseases in children in Japan 2007. Tokyo: Japanese Society of Pediatric Pulmonology and Japanese Society for Pediatric Infectious Diseases; 2007.

  6. Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA (eds) Manual of clinical microbiology, 9th edn. Washington, DC: American Society of Microbiology; 2007.

  7. Nakayama E, Hasegawa K, Morozumi M, Kobayashi R, Chiba N, Iitsuka T, et al. Rapid optimization of antimicrobial chemotherapy given to pediatric patients with community-acquired pneumonia using PCR techniques with serology and standard culture. J Infect Chemother. 2007;13:305–13.

    PubMed  Article  CAS  Google Scholar 

  8. McIntosh K. Community-acquired pneumonia in children. N Engl J Med. 2002;346:429–37.

    PubMed  Article  Google Scholar 

  9. Jerome OK. Bacterial pneumonias. In: Feigin and Cherry’s textbook of pediatric infectious diseases. 6th edn. Philadelphia: Saunders; 2009. p. 303–14.

  10. British Thoracic Society. Guidelines for the management of community acquired pneumonia in childhood. Thorax. 2002;57(suppl 1):i1–i24.

    Google Scholar 

  11. Teele DW, Pelton SI, Grant MJ, Herskowitz J, Rosen DJ, Allen CE, et al. Bacteremia in febrile children under 2 years of age: results of cultures of blood of 600 consecutive febrile children seen in a “walk-in” clinic. J Pediatr. 1975;87:227–30.

    PubMed  Article  CAS  Google Scholar 

  12. Bonzel L, Tenenbaum T, Schroten H, Schildgen O, Schweitzer-Krantz S, Adams O, et al. Frequent detection of viral coinfection in children hospitalized with acute respiratory tract infection using a real-time polymerase chain reaction. Pediatr Infect Dis J. 2008;27:589–94.

    PubMed  Article  Google Scholar 

  13. Calvo C, García-García ML, Blanco C, Vázquez MC, Frías ME, Pérez-Breña P, et al. Multiple simultaneous viral infections in infants with acute respiratory tract infections in Spain. J Clin Virol. 2008;42:268–72.

    PubMed  Article  Google Scholar 

  14. Franz A, Adams O, Willems R, Bonzel L, Neuhausen N, Schweizer-Krantz S, et al. Correlation of viral load of respiratory pathogens and co-infections with disease severity in children hospitalized for lower respiratory tract infection. J Clin Virol. 2010;48:239–45.

    PubMed  Article  Google Scholar 

  15. Morozumi M, Ito A, Murayama SY, Hasegawa K, Kobayashi R, Iwata S, et al. Assessment of real-time PCR for diagnosis of Mycoplasma pneumoniae pneumonia in pediatric patients. Can J Microbiol. 2006;52:125–9.

    PubMed  Article  CAS  Google Scholar 

  16. Claesson BA, Trollfors B, Brolin I, Granström M, Henrichsen J, Jodal U, et al. Etiology of community-acquired pneumonia in children based on antibody responses to bacterial and viral antigens. Pediatr Infect Dis J. 1989;8:856–62.

    PubMed  Article  CAS  Google Scholar 

  17. Don M, Fasoli L, Paldanius M, Vainionpää R, Kleemola M, Räty R, et al. Aetiology of community-acquired pneumonia: serological results of a paediatric survey. Scand J Infect Dis. 2005;37:806–12.

    PubMed  Article  Google Scholar 

  18. Heiskanen-Kosma T, Korppi M, Jokinen C, Kurki S, Heiskanen L, Juvonen H, et al. Etiology of childhood pneumonia: serologic results of a prospective, population-based study. Pediatr Infect Dis J. 1998;17:986–91.

    PubMed  Article  CAS  Google Scholar 

  19. Juvén T, Mertsola J, Waris M, Leinonen M, Meurman O, Roivainen M, et al. Etiology of community-acquired pneumonia in 254 hospitalized children. Pediatr Infect Dis J. 2000;19:293–8.

    PubMed  Article  Google Scholar 

  20. Korppi M, Heiskanen-Kosma T, Jalonen E, Saikku P, Leinonen M, Halonen P, et al. Aetiology of community-acquired pneumonia in children treated in hospital. Eur J Pediatr. 1993;152:24–30.

    PubMed  Article  CAS  Google Scholar 

  21. McCracken GH Jr. Etiology and treatment of pneumonia. Pediatr Infect Dis J. 2000;19:373–7.

    PubMed  Article  Google Scholar 

  22. Michelow IC, Olsen K, Lozano J, Rollins NK, Duffy LB, Ziegler T, et al. Epidemiology and clinical characteristics of community-acquired pneumonia in hospitalized children. Paediatrics. 2004;113:701–7.

    Article  Google Scholar 

  23. Don M, Canciani M, Korppi M. Community-acquired pneumonia in children: what’s old? What’s new? Acta Paediatr. 2010;99:1602–8.

    PubMed  Article  Google Scholar 

  24. Korppi M. Community-acquired pneumonia in children: issue in optimizing antibacterial treatment. Pediatr Drugs. 2003;5:821–32.

    Article  Google Scholar 

  25. Morozumi M, Takahashi T, Ubukata K. Macrolide-resistant Mycoplasma pneumoniae: characteristics of isolates and clinical aspects of community-acquired pneumonia. J Infect Chemother. 2010;16:78–86.

    PubMed  Article  Google Scholar 

  26. Virkki R, Juven T, Rikalainen H, Svedström E, Mertsola J, Ruuskanen O. Differentiation of bacterial and viral pneumonia in children. Thorax. 2002;57:438–44.

    PubMed  Article  CAS  Google Scholar 

  27. Flood RG, Badik J, Aronoff SC. The utility of serum C-reactive protein in differentiating bacterial from nonbacterial pneumonia in children: a meta-analysis of 1230 children. Pediatr Infect Dis J. 2008;27:95–9.

    PubMed  Google Scholar 

  28. Korppi M. Non-specific host response markers in the differentiation between pneumococcal and viral pneumonia: what is the most accurate combination? Pediatr Int. 2004;46:545–50.

    PubMed  Article  Google Scholar 

  29. Don M, Valent F, Korppi M, Canciani M. Differentiation of bacterial and viral community-acquired pneumonia in children. Pediatr Int. 2009;51:91–6.

    PubMed  Article  Google Scholar 

  30. Toikka P, Virkki R, Mertsola J, Ashorn P, Eskola J, Ruuskanen O. Bacteremic pneumococcal pneumonia in children. Clin Infect Dis. 1999;29:568–72.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takafumi Okada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 2526 kb)

About this article

Cite this article

Okada, T., Morozumi, M., Sakata, H. et al. A practical approach estimating etiologic agents using real-time PCR in pediatric inpatients with community-acquired pneumonia. J Infect Chemother 18, 832–840 (2012). https://doi.org/10.1007/s10156-012-0422-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10156-012-0422-7

Keywords

  • Real-time PCR
  • Community-acquired pneumonia
  • Pediatric inpatient
  • Comprehensive detection
  • Etiologic agents