Skip to main content
Log in

Antimicrobial and anti-inflammatory effects of clarithromycin on Mycobacterium avium complex replication in cultured human bronchial epithelial cells

  • Original Article
  • Published:
Journal of Infection and Chemotherapy

Abstract

The Mycobacterium avium complex (MAC) invades cultured human bronchial cells, can replicate intracellularly, and facilitates the release of inflammatory cytokines and chemokines from cells. The purpose of this study was to examine the effects of clarithromycin (CAM) on MAC invasion, replication, and the release of cytokines and chemokines. A human bronchial epithelial cell line (BEAS-2B) monolayer grown on a tissue culture plate was infected with MAC. After 24 h, the cells were washed with Hanks’ buffered salt solution, and extracellular bacteria were killed. The monolayer was further cultured for 5 days in medium containing CAM and subjected to a replication assay. The supernatants were assessed using a microchemotaxis assay and enzyme-linked immunosorbent assay (ELISA). mRNA expression was evaluated using a DNA array. The amount of intracellular MAC on day 5 of culture was significantly lower in the presence of CAM at the levels of 1× and 4× MIC. CAM inhibited the release of chemotactic activity and the production of interleukin (IL)-8 and macrophage chemotactic protein (MCP)-1. DNA array analysis of mRNA expression in BEAS-2B cells showed that CAM inhibited the expression of inflammatory cytokines and chemokines, involving IL-6, MCP-1, and IL-8 mRNA. MAC invaded and replicated in BEAS-2B cells and induced the production of chemotactic factors. In contrast, CAM may have bactericidal and bacteriostatic effects leading to the inhibition of inflammatory events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

MAC:

Mycobacterium avium complex

CAM:

Clarithromycin

CFU:

Colony-forming unit

NCA:

Neutrophil chemotactic activity

MCA:

Monocyte chemotactic activity

References

  1. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175:744–5.

    Article  CAS  Google Scholar 

  2. Prince DS, Peterson DD, Steiner RM, Gottlieb JE, Scott R, Israel HL, et al. Infection with Mycobacterium avium complex in patients without predisposing conditions. N Engl J Med. 1989;321:863–8.

    Article  PubMed  CAS  Google Scholar 

  3. Yamazaki Y, Kubo K, Takamizawa A, Yamamoto H, Honda T, Sone S. Markers indicating deterioration of pulmonary Mycobacterium avium-intracellulare infection. Am J Respir Crit Care Med. 1999;160:1851–5.

    PubMed  CAS  Google Scholar 

  4. Desaki M, Okazaki H, Sunazuka T, Omura S, Yamamoto K, Takizawa H. Molecular mechanisms of anti-inflammatory action of erythromycin in human bronchial epithelial cells: possible role in the signaling pathway that regulates nuclear factor-kappaB activation. Antimicrob Agents Chemother. 2004;48:1581–5.

    Article  PubMed  CAS  Google Scholar 

  5. Fujita J, Ohtsuki Y, Suemitsu I, Shigeto E, Yamadori I, Obayashi Y, et al. Pathological and radiological changes in resected lung specimens in Mycobacterium avium intracellulare complex disease. Eur Respir J. 1999;13:535–40.

    Article  PubMed  CAS  Google Scholar 

  6. Tanaka E, Kimoto T, Tsuyuguchi K, Watanabe I, Matsumoto H, Niimi A, et al. Effect of clarithromycin regimen for Mycobacterium avium complex pulmonary disease. Am J Respir Crit Care Med. 1999;160:866–72.

    PubMed  CAS  Google Scholar 

  7. Wallace RJ Jr, Brown BA, Griffith DA, Girard WM, Murphy DT. Clarithromycin regimens for pulmonary Mycobacterium avium complex. The first 50 patients. Am J Respir Crit Care Med. 1996;153:1766–72.

    PubMed  Google Scholar 

  8. Yamazaki Y, Danelishvili L, Wu M, Hidaka E, Katsuyama T, Stang B, et al. The ability to form biofilm influences Mycobacterium avium invasion and translocation of bronchial epithelial cells. Cell Microbiol. 2006;8:806–14.

    Article  PubMed  CAS  Google Scholar 

  9. Ashitani J, Mukae H, Hiratsuka T, Nakazato M, Kumamoto K, Matsukura S. Plasma and BAL fluid concentrations of antimicrobial peptides in patients with Mycobacterium avium-intracellulare infection. Chest. 2001;119:1131–7.

    Article  PubMed  CAS  Google Scholar 

  10. Boyum A. Isolation of mononuclear cells and granulocytes from human blood. Scand J Clin Lab Invest. 1968;97:77–89.

    CAS  Google Scholar 

  11. Koyama S, Sato E, Nomura H, Kubo K, Miura M, Yamashita T, et al. The potential of various lipopolysaccharides to release monocyte chemotactic activity from lung epithelial cell and fibroblasts. Eur Respir J. 1999;14:545–52.

    Article  PubMed  CAS  Google Scholar 

  12. Falk W, Goodwin RH Jr, Leonard EJ. A 48-well micro chemotaxis assembly for rapid and accurate measurement of leukocyte migration. J Immunol Methods. 1980;33:239–47.

    PubMed  CAS  Google Scholar 

  13. Kobashi Y, Matsushima T. The effect of combined therapy according to the guidelines for the treatment of Mycobacterium avium complex pulmonary disease. Intern Med. 2003;42:670–5.

    Article  PubMed  CAS  Google Scholar 

  14. Ishiguro M, Koga H, Kohno S, Hayashi T, Yamaguchi K, Hirota M. Penetration of macrolides into human polymorphonuclear leukocytes. J Antimicrob Chemother. 1989;24:719–29.

    Article  PubMed  CAS  Google Scholar 

  15. Kunishima H, Takemura H, Yamamoto H, Kanemitsu K, Shimada J. Evaluation of the activity of antimicrobial agents against Legionella pneumophila multiplying in a human monocytic cell line, THP-a, and an alveolar epithelial cell line, A549. J Infect Chemother. 2000;6:206–10.

    Article  PubMed  CAS  Google Scholar 

  16. Hasegawa N, Nishimura T, Watabnabe M, Tasaka S, Nakano Y, Yamazaki K, et al. Concentrations of clarithromycin and active metabolite in the epithelial lining fluid of patients with Mycobacterium avium complex pulmonary disease. Pulm Pharmacol Ther. 2009;22:190–3.

    Google Scholar 

  17. Matsuyama W, Mizoguchi A, Iwami F, Koreeda Y, Wakimoto J, Kanazawa H, et al. Clinical investigation of pulmonary Mycobacterium avium complex infection in human T lymphotrophic virus type I carriers. Thorax. 2000;55:388–92.

    Article  PubMed  CAS  Google Scholar 

  18. Yamazaki Y, Kubo K, Sekiguchi M. Analysis of BAL fluid in M. avium-intracellulare infection in individuals without predisposing lung disease. Eur Respir J. 1998;11:1227–31.

    Article  PubMed  CAS  Google Scholar 

  19. Schultz MJ. Macrolide activities beyond their antimicrobial effects: macrolides in diffuse panbronchiolitis and cystic fibrosis. J Antimicrob Chemother. 2004;54:21–8.

    Article  PubMed  CAS  Google Scholar 

  20. Bonfield TL, Panuska JR, Konstan MW, Hilliard KA, Hilliard JB, Ghnaim H, et al. Inflammatory cytokines in cystic fibrosis lungs. Am J Respir Crit Care Med. 1995;152:2111–8.

    PubMed  CAS  Google Scholar 

  21. Griffith DE, Brown BA, Murphy DT, Girard WM, Couch L, Wallace RJ Jr. Initial (6-month) results of three-times-weekly azithromycin in treatment regimens for Mycobacterium avium complex lung disease in human immunodeficiency virus-negative patients. J Infect Dis. 1998;178:121–6.

    Article  PubMed  CAS  Google Scholar 

  22. Kohyama T, Takizawa H, Kawasaki S, Akiyama N, Sato M, Ito K. Fourteen-member macrolides inhibit interleukin-8 release by human eosinophilus from atopic donors. Antimicrob Agents Chemother. 1999;43:907–11.

    PubMed  CAS  Google Scholar 

  23. Suzuki H, Shimomura A, Ikeda K, Furukawa M, Oshima T, Takasaka T. Inhibitory effect of macrolide on interleukin-8 secretion from cultured human nasal epithelial cells. Laryngoscope. 1997;107:1661–6.

    Article  PubMed  CAS  Google Scholar 

  24. Takizawa H, Desaki M, Ohtoshi T, Kawasaki S, Kohyama T, Sato M, et al. Erythromycin modulates IL-8 expression in normal and inflamed human bronchial epithelial cells. Am J Respir Crit Care Med. 1997;156:266–71.

    PubMed  CAS  Google Scholar 

  25. Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell. 2002;10:1033–43.

    Article  PubMed  CAS  Google Scholar 

  26. Saige H, Nishimura J, Kuwata H, Okuyama M, Matsumoto S, Sato S, et al. Lipocalin 2-dependent inhibition of mycobacterial growth in alveolar epithelium. J Immunol. 2008;181:8521–7.

    Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for AIDS Research from the Ministry of Health, Labor, and Welfare.

Conflicts of interest

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Yamazaki.

About this article

Cite this article

Yamazaki, Y., Ushiki, A., Tanabe, Y. et al. Antimicrobial and anti-inflammatory effects of clarithromycin on Mycobacterium avium complex replication in cultured human bronchial epithelial cells. J Infect Chemother 18, 683–688 (2012). https://doi.org/10.1007/s10156-012-0395-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10156-012-0395-6

Keywords

Navigation