Skip to main content
Log in

Epidemiological survey of rifampicin resistance in clinic isolates of Brucella melitensis obtained from all regions of Turkey

  • Original Article
  • Published:
Journal of Infection and Chemotherapy

Abstract

The aim of the present study was to assess the antimicrobial susceptibility of Brucella melitensis isolates to rifampicin (RIF) depending on time and regional differences. A total of 94 human Brucella isolates collected in an 8-year period from the beginning of 2002 to the end of 2009 throughout Turkey were investigated. The isolates were identified at species and biovar levels by conventional methods, and minimum inhibitory concentrations (MIC) of RIF was determined by using the E test method. All isolates were identified as B. melitensis (93 isolates, biovar 3; 1, biovar 1), and MIC50 and MIC90 values of RIF were 1 and 1.5 μg/ml, respectively (MIC range, 0.25–1.5 μg/ml). All isolates were sensitive to RIF except 2 isolates, which had intermediate susceptibility to RIF. These findings indicated that B. melitensis biovar 3 may be the most frequently agent responsible for human brucellosis in Turkey. None of the isolates in our region was resistant to RIF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV. The new global map of human brucellosis. Lancet Infect Dis. 2006;6:91–9.

    Article  PubMed  Google Scholar 

  2. Food and Agriculture Organization of the United Nations, World Organisation for Animal Health, and World Health Organization (2006) Brucellosis in human and animals. WHO/CDS/EPR/2006.7. World Health Organization, Geneva

  3. Foster G, Osterman BS, Godfroid J, Jacques I, Cloeckaert A. Brucella ceti sp. nov., and Brucella pinnipedialis sp. nov. for Brucella strains with cetaceans and seals as their preferred hosts. Int J Syst Evol Microbiol. 2007;57:2688–93.

    Article  PubMed  CAS  Google Scholar 

  4. Scholz HC, Hubalek Z, Vergnaud GI, Tomaso H, Al-Dahouk S, Melzer F. Brucella microti sp. nov. isolated from the common vole Microtus arvalis. Int J Syst Evol Microbiol. 2008;58:375–82.

    Article  PubMed  CAS  Google Scholar 

  5. Scholz HC, Nöckler K, Göllner C, Bahn P, Vergnaud G, Tomaso H, et al. Brucella inopinata sp. nov. isolated from a breast implant infection. Int J Syst Evol Microbiol. 2010;60:801–8.

    Article  PubMed  CAS  Google Scholar 

  6. Del Vecchio VG, Kapatral V, Redkar RJ, Patra G, Mujer C, Los T, et al. The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc Natl Acad Sci USA. 2002;99:443–8.

    Article  Google Scholar 

  7. Yuce A, Cavus SA. Brucellosis in Turkey. Klimik Derg. 2006;19:87–97.

    Google Scholar 

  8. Yumuk Z, Dundar V. The effect of long-term ethanol feeding on efficacy of doxycycline plus rifampicin in the treatment of experimental brucellosis caused by Brucella melitensis in rats. J Chemother. 2005;17:509–13.

    PubMed  CAS  Google Scholar 

  9. Colmenero JD, Gallardo FLC, Agundez JAG, Sedeno J, Betinez J, Valverde E. Possible implications of doxycycline–rifampin interaction for treatment of brucellosis. Antimicrob Agents Chemother. 1994;38:2798–802.

    PubMed  CAS  Google Scholar 

  10. Joint FAO/WHO expert committee on brucellosis. Sixth report. WHO Tech Rep Ser 1986;740:1–132.

  11. Cavusoglu C, Hilmioglu S, Guneri S, Bilgic A. Characterization of rpoB mutations in rifampicin-resistant clinical isolates of Mycobacterium tuberculosis from Turkey by DNA sequencing and line probe assay. J Clin Microbiol. 2002;40:4435–8.

    Article  PubMed  CAS  Google Scholar 

  12. Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell. 2001;104:901–12.

    Article  PubMed  CAS  Google Scholar 

  13. Baykam N, Esener H, Ergonul O, Eren S, Celikbas AK, Dokuzoguz B. In vitro antimicrobial susceptibility of Brucella species. Int J Antimicrob Agents. 2004;23:405–7.

    Article  PubMed  CAS  Google Scholar 

  14. Akova M, Gur D, Livermore DM, Kocagoz T, Akalın HE. In vitro activities of antibiotics alone and in combination against Brucella melitensis at neutral and acidic pHs. Antimicrob Agents Chemother. 1999;43:1298–3000.

    PubMed  CAS  Google Scholar 

  15. Marianelli C, Ciuchini F, Tarantino M, Pasquali P, Adone R. Genetic bases of the rifampicin resistance phenotype in Brucella spp. J Clin Microbiol. 2004;42:5439–43.

    Article  PubMed  CAS  Google Scholar 

  16. Hall WH. Modern chemotherapy for brucellosis in humans. Rev Infect Dis. 1991;13:523–4.

    Article  Google Scholar 

  17. Pappas G, Solera J, Akritidis N, Tsianos E. New approaches to the antibiotic treatment of brucellosis. Int J Antimicrob Agents. 2005;26:101–5.

    Article  PubMed  CAS  Google Scholar 

  18. Gur D, Kocagoz S, Akova M, Unal S. Comparison of E-test to microdilution for determining in vitro activities of antibiotics against Brucella melitensis. Antimicrob Agents Chemother. 1999;43:2337.

    PubMed  CAS  Google Scholar 

  19. Clinical and Laboratory Standards Institute (2006) Performance standards for antimicrobial susceptibility testing. CLSI document 26:M100–S16. CLSI, Wayne, PA

    Google Scholar 

  20. Alton GG, Jones LM, Angus RD, Verger JM (1988) Techniques for the brucellosis laboratory. Institut National de la Recherche Agronomique (INRA), Paris, pp 34–61.

  21. Simsek H, Erdenlig S, Oral B, Tulek N. Typing-biotyping of Brucella isolates of human origin and their epidemiologic evaluation. Klimik. 2004;17:103–6.

    Google Scholar 

  22. Kose S, Kilic S, Ozbel Y. Identification of Brucella species isolated from proven brucellosis patients in Izmir, Turkey. J Basic Microbiol. 2005;45:323–7.

    Article  PubMed  CAS  Google Scholar 

  23. Ayaslıoglu E, Kilic S, Aydın K, Kilic D, Kaygusuz S, Agalar C. Antimicrobial susceptibility of Brucella melitensis isolated from blood samples. Turk J Med Sci. 2008;38:257–62.

    Google Scholar 

  24. Kilic S, Dizbay M, Cabadak H. In vitro activity of tigecycline, tetracycline and fluoroquinolones against Brucella melitensis. J Chemother. 2008;20:33–7.

    PubMed  CAS  Google Scholar 

  25. Sayan M, Yumuk Z, Bilenoglu O, Erdenlig S, Willke A. Genotyping of B. melitensis by rpoB gene analysis and re-evaluation of conventional serotyping method. Jpn J Infect Dis. 2009;62:160–3.

    PubMed  CAS  Google Scholar 

  26. Refai M. Incidence and control of brucellosis in the Near East region. Vet Microbiol. 2002;90:81–110.

    Article  PubMed  Google Scholar 

  27. Erdenlig S, Iyisan AS, Baklan EA, Aksoy HY. Biovar distribution of Brucella isolates from livestock in Turkey, 1999 to 2006. In: 15th International congress of Mediterranean Federation for Health and Production of Ruminants, 15–19 May, 2007, Kusadası-Turkey.

  28. Turkmani A, Ioannidis A, Christidou A, Psaroulaki A, Loukaides F, Tselentis Y. In vitro susceptibilities of Brucella melitensis isolates to eleven antibiotics. Ann Clin Microbiol Antimicrob. 2006;5:1–4.

    Article  Google Scholar 

  29. Bodur H, Balaban N, Aksaray S, Yetener V, Akıncı E, Colpan A, et al. Biotypes and antimicrobial susceptibilities of Brucella isolates. Scand J Infect Dis. 2003;35:337–8.

    Article  PubMed  CAS  Google Scholar 

  30. Orhan G, Bayram A, Zer Y, Balci I. Synergy tests by E-test and checkerboard methods of antimicrobial combinations against Brucella melitensis. J Clin Microbiol. 2005;43:140–3.

    Article  PubMed  CAS  Google Scholar 

  31. Rubinstein ER, Lang R, Shasha B, Hagar B, Diamanstein L, Joseph G, et al. In vitro susceptibility of Brucella melitensis to antibiotics. Antimicrob Agents Chemother. 1991;35:1925–7.

    PubMed  CAS  Google Scholar 

  32. Martin TI, Sanchez GE, Martinez IM, Fresnadillo MJ, Sanchez GJE, Rodriguez GJA, et al. In vitro activities of six new fluoroquinolones against Brucella melitensis. Antimicrob Agents Chemother. 1999;43:194–5.

    Google Scholar 

  33. Sayan M, Yumuk Z, Dundar D, Bilenoglu O, Erdenlig S, Yasar E, et al. Rifampicin resistance phenotyping of B. melitensis by rpoB gene analysis in clinical isolates melitensis. J Chemother. 2008;20:431–5.

    PubMed  CAS  Google Scholar 

  34. Esel D, Sumerkan B, Ayangil D, Telli M. Comparison of agar dilution method and E-test in the determination of antibiotic susceptibility of Brucella melitensis strains. Ankem Derg. 2004;18:196–9.

    Google Scholar 

  35. Oguz AV, Eroglu C, Guneri S, Yapar N, Oztop A, Sanic A, et al. RpoB gene mutations in rifampicin-resistant Mycobacterium tuberculosis strains isolated in the Aegean region of Turkey. J Chemother. 2004;16:442–5.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Sayan.

About this article

Cite this article

Sayan, M., Kılıc, S. & Uyanık, M.H. Epidemiological survey of rifampicin resistance in clinic isolates of Brucella melitensis obtained from all regions of Turkey. J Infect Chemother 18, 41–46 (2012). https://doi.org/10.1007/s10156-011-0281-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10156-011-0281-7

Keywords

Navigation