Skip to main content
Log in

Degradation of interleukin 8 by the serine protease MucD of Pseudomonas aeruginosa

  • Original Article
  • Published:
Journal of Infection and Chemotherapy

Abstract

We investigated the influence of the type III effector, ExoS, on the host epithelial cell response to Pseudomonas aeruginosa infection, and we found that disruption of the exoS gene caused a significant increase in the amount of interleukin-8 (IL-8) in the culture medium of Caco-2 cells. We show that IL-8 was degraded in the culture medium following infection of the cells with the wild-type (PAO1), but not the exoS knock-out (the ΔexoS) strain. Purified ExoS protein itself did not degrade IL-8. We next show that IL-8 degradation by PAO1 was inhibited by the addition of serine protease inhibitors. These results strongly suggest that a bacterial serine protease that degrades IL-8 is expressed and secreted into the culture medium of Caco-2 cells infected with PAO1, and that the expression of this protein is repressed in cells infected with the ΔexoS strain. The PAO1 genome encodes 28 different protease genes, including two serine proteases: PA3535 and mucD. PA3535 and mucD gene knock-outs were constructed (ΔmucD and ΔPA3535), and ΔmucD but not ΔPA3535 showed reduced IL-8 degradation. To understand the significance of IL-8 degradation, we next evaluated neutrophil infiltration in lungs excised from mice intranasally infected with the P. aeruginosa strains. Increased neutrophil infiltration was observed in PAO1-infected mice, but not in ΔexoS- or ΔmucD-infected mice. Taken together, our results suggest that P. aeruginosa escapes from phagocytic killing due to IL-8 degradation following the secretion of the MucD serine protease, whose expression appears to be influenced by ExoS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ajayi T, Allmond LR, Sawa T, Wiener-Kronish JP. Single-nucleotide-polymorphism mapping of the Pseudomonas aeruginosa type III secretion toxins for development of a diagnostic multiplex PCR system. J Clin Microbiol. 2003;41:3526–31.

    Article  PubMed  CAS  Google Scholar 

  2. Galán JE, Collmer A. Type III secretion machines: bacterial devices for protein delivery into host cells. Science. 1999;284:1322–8.

    Article  PubMed  Google Scholar 

  3. Janeway CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.

    Article  PubMed  CAS  Google Scholar 

  4. Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011;30:16–34.

    Article  PubMed  CAS  Google Scholar 

  5. Raoust E, Balloy V, Garcia-Verdugo I, Touqui L, Ramphal R, Chignard M. Pseudomonas aeruginosa LPS or flagellin are sufficient to activate TLR-dependent signaling in murine alveolar macrophages and airway epithelial cells. PLoS One. 2009;4:e7259.

    Article  PubMed  Google Scholar 

  6. Cigana C, Curcurù L, Leone MR, Ieranò T, Lorè NI, Bianconi I, et al. Pseudomonas aeruginosa exploits lipid A and muropeptides modification as a strategy to lower innate immunity during cystic fibrosis lung infection. PLoS One. 2009;4:e8439.

    Article  PubMed  Google Scholar 

  7. Delgado MA, Poschet JF, Deretic V. Nonclassical pathway of Pseudomonas aeruginosa DNA-induced interleukin-8 secretion in cystic fibrosis airway epithelial cells. Infect Immun. 2006;74:2975–84.

    Article  PubMed  CAS  Google Scholar 

  8. Pena J, Fu Z, Schwarzer C, Machen TE. Pseudomonas aeruginosa inhibition of flagellin-activated NF-kappaB and interleukin-8 by human airway epithelial cells. Infect Immun. 2009;77:2857–65.

    Article  PubMed  CAS  Google Scholar 

  9. Furuya N, Hirakata Y, Tomono K, Matsumoto T, Tateda K, Kaku M, et al. Mortality rates amongst mice with endogenous septicaemia caused by Pseudomonas aeruginosa isolates from various clinical sources. J Med Microbiol. 1993;39:141–6.

    Article  PubMed  CAS  Google Scholar 

  10. Hirakata Y, Srikumar R, Poole K, Gotoh N, Suematsu T, Kohno S, et al. Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J Exp Med. 2002;196:109–18.

    Article  PubMed  CAS  Google Scholar 

  11. Matsumoto T, Tateda K, Miyazaki S, Furuya N, Ohno A, Ishii Y, et al. Adverse effects of tumour necrosis factor in cyclophosphamide-treated mice subjected to gut-derived Pseudomonas aeruginosa sepsis. Cytokine. 1997;9:763–9.

    Article  PubMed  CAS  Google Scholar 

  12. Matsumoto T, Tateda K, Miyazaki S, Furuya N, Ohno A, Ishii Y, et al. Effect of interleukin-10 on gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob Agents Chemother. 1998;42:2853–7.

    PubMed  CAS  Google Scholar 

  13. Goehring UM, Schmidt G, Pederson KJ, Aktories K, Barbieri JT. The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J Biol Chem. 1999;274:36369–72.

    Article  PubMed  CAS  Google Scholar 

  14. Hauser AR. The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol. 2009;7:654–65.

    Article  PubMed  CAS  Google Scholar 

  15. Henriksson ML, Francis MS, Peden A, Aili M, Stefansson K, Palmer R, et al. A nonphosphorylated 14-3-3 binding motif on exoenzyme S that is functional in vivo. Eur J Biochem. 2002;269:4921–9.

    Article  PubMed  CAS  Google Scholar 

  16. Würtele M, Renault L, Barbieri JT, Wittinghofer A, Wolf E. Structure of the ExoS GTPase activating domain. FEBS Lett. 2001;491:26–9.

    Article  PubMed  Google Scholar 

  17. Coburn J, Gill DM. ADP-ribosylation of p21ras and related proteins by Pseudomonas aeruginosa exoenzyme S. Infect Immun. 1991;59:4259–62.

    PubMed  CAS  Google Scholar 

  18. Coburn J, Wyatt RT, Iglewski BH, Gill DM. Several GTP-binding proteins, including p21c-H-ras, are preferred substrates of Pseudomonas aeruginosa exoenzyme S. J Biol Chem. 1989;264:9004–8.

    PubMed  CAS  Google Scholar 

  19. Henriksson ML, Sundin C, Jansson AL, Forsberg A, Palmer RH, Hallberg B. Exoenzyme S shows selective ADP-ribosylation and GTPase-activating protein (GAP) activities towards small GTPases in vivo. Biochem J. 2002;367:617–28.

    Article  PubMed  CAS  Google Scholar 

  20. Okuda J, Hayashi N, Okamoto M, Sawada S, Minagawa S, Yano Y, et al. Translocation of Pseudomonas aeruginosa from the intestinal tract is mediated by the binding of ExoS to an Na, K-ATPase regulator, FXYD3. Infect Immun. 2010;78:4511–22.

    Article  PubMed  CAS  Google Scholar 

  21. Sutterawala FS, Mijares LA, Li L, Ogura Y, Kazmierczak BI, Flavell RA. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med. 2007;204:3235–45.

    Article  Google Scholar 

  22. Okuda J, Toyotome T, Kataoka N, Ohno M, Abe H, Shimura Y, et al. Shigella effector IpaH9.8 binds to a splicing factor U2AF(35) to modulate host immune responses. Biochem Biophys Res Commun. 2005;333:531–9.

    Article  PubMed  CAS  Google Scholar 

  23. Ferguson MW, Maxwell JA, Vincent TS, da Silva J, Olson JC. Comparison of the exoS gene and protein expression in soil and clinical isolates of Pseudomonas aeruginosa. Infect Immun. 2001;69:2198–210.

    Article  PubMed  CAS  Google Scholar 

  24. Edwards RJ, Taylor GW, Ferguson M, Murray S, Rendell N, Wrigley A, et al. Specific C-terminal cleavage and inactivation of interleukin-8 by invasive disease isolates of Streptococcus pyogenes. J Infect Dis. 2005;192:783–90.

    Article  PubMed  CAS  Google Scholar 

  25. Hidalgo-Grass C, Mishalian I, Dan-Goor M, Belotserkovsky I, Eran Y, Nizet V, et al. A streptococcal protease that degrades CXC chemokines and impairs bacterial clearance from infected tissues. EMBO J. 2006;25:4628–37.

    Article  PubMed  CAS  Google Scholar 

  26. Zinkernagel AS, Timmer AM, Pence MA, Locke JB, Buchanan JT, Turner CE, et al. The IL-8 protease SpyCEP/ScpC of group A Streptococcus promotes resistance to neutrophil killing. Cell Host Microbe. 2008;4:170–8.

    Article  PubMed  CAS  Google Scholar 

  27. Cezairliyan BO, Sauer RT. Control of Pseudomonas aeruginosa AlgW protease cleavage of MucA by peptide signals and MucB. Mol Microbiol. 2009;72:368–79.

    Article  PubMed  CAS  Google Scholar 

  28. Wood LF, Ohman DE. Independent regulation of MucD, an HtrA-like protease in Pseudomonas aeruginosa, and the role of its proteolytic motif in alginate gene regulation. J Bacteriol. 2006;188:3134–7.

    Article  PubMed  CAS  Google Scholar 

  29. Boucher JC, Martinez-Salazar J, Schurr MJ, Mudd MH, Yu H, Deretic V. Two distinct loci affecting conversion to mucoidy in Pseudomonas aeruginosa in cystic fibrosis encode homologs of the serine protease HtrA. J Bacteriol. 1996;178:511–23.

    PubMed  CAS  Google Scholar 

  30. Hobert ME, Sands KA, Mrsny RJ, Madara JL. Cdc42 and Rac1 regulate late events in Salmonella typhimurium-induced interleukin-8 secretion from polarized epithelial cells. J Biol Chem. 2002;277:51025–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Kyoto Pharmaceutical University Fund for the Promotion of Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomasa Gotoh.

About this article

Cite this article

Okuda, J., Hayashi, N., Tanabe, S. et al. Degradation of interleukin 8 by the serine protease MucD of Pseudomonas aeruginosa . J Infect Chemother 17, 782–792 (2011). https://doi.org/10.1007/s10156-011-0257-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10156-011-0257-7

Keywords

Navigation