Skip to main content

Measuring antimicrobial susceptibility of Pseudomonas aeruginosa using Poloxamer 407 gel

Abstract

Pseudomonas aeruginosa is a Gram-negative bacterium that causes various opportunistic infections. Chronic and intractable infections with P. aeruginosa are closely related to the high levels of resistance displayed by this organism to antimicrobial agents and its ability to form biofilms. Although the standard method for examining antimicrobial resistance involves susceptibility testing using Mueller–Hinton agar or broth, this method does not take into account the influence of biofilm formation on antimicrobial susceptibility. Poloxamer 407 is a hydrophilic, nonionic surfactant of the more general class of copolymers that can be used to culture bacteria with similar properties as cells in a biofilm environment. Therefore, the aim of this study was to compare the antimicrobial susceptibility of bacteria cultured in Poloxamer 407 gel to those grown on Mueller–Hinton agar using the Kirby–Bauer disk diffusion method with 24 strains of P. aeruginosa. Antimicrobial sensibility differed between the two mediums, with >60% of the strains displaying increased resistance to β-lactams when cultured on Poloxamer 407 gel. In addition, scanning electron microscopy revealed that typical biofilm formation and extracellular polymeric substance production was only observed with bacteria grown on Poloxamer 407 gel. Therefore, antimicrobial susceptibility test using Poloxamer 407 gel may provide more accurate information and allow the selection of suitable antimicrobial agents for treating patients infected with biofilm-forming pathogens.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15:167–93.

    PubMed  Article  CAS  Google Scholar 

  2. Slusher MM, Myrvik QN, Lewis JC, Gristina AG. Extended-wear lenses, biofilm, and bacterial adhesion. Arch Ophthalmol. 1987;105:110–5.

    PubMed  CAS  Google Scholar 

  3. Stickler DJ, Morris NS, McLean RJ, Fuqua C. Biofilms on indwelling urethral catheters produce quorum-sensing signal molecules in situ and in vitro. Appl Environ Microbiol. 1998;64:3486–90.

    PubMed  CAS  Google Scholar 

  4. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–22.

    PubMed  Article  CAS  Google Scholar 

  5. Drenkard E, Ausubel FM. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature. 2002;416:740–3.

    PubMed  Article  CAS  Google Scholar 

  6. Ehrlich GD, Veeh R, Wang X, Costerton JW, Hayes JD, Hu FZ, et al. Mucosal biofilm formation on middle-ear mucosa in the chinchilla model of otitis media. JAMA. 2002;287:1710–5.

    PubMed  Article  Google Scholar 

  7. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature. 2000;407:762–4.

    PubMed  Article  CAS  Google Scholar 

  8. Werner E, Roe F, Bugnicourt A, Franklin MJ, Heydorn A, Molin S, et al. Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol. 2004;70:6188–96.

    PubMed  Article  CAS  Google Scholar 

  9. Parks QM, Young RL, Poch KR, Malcolm KC, Vasil ML, Nick JA. Neutrophil enhancement of Pseudomonas aeruginosa biofilm development: human F-actin and DNA as targets for therapy. J Med Microbiol. 2009;58:492–502.

    PubMed  Article  CAS  Google Scholar 

  10. Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother. 2001;45:999–1007.

    PubMed  Article  CAS  Google Scholar 

  11. Costerton JW, Veeh R, Shirtliff M. The application of biofilm science to the study and control of chronic bacterial infections. J Clin Inves. 2003;112:1466–77.

    CAS  Google Scholar 

  12. Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am Soc of Clin Path. 1966;45:493–6.

    CAS  Google Scholar 

  13. Clutterbuck AL, Cochrane CA, Dolman J, Percival SL. Evaluating antibiotics for use in medicine using a poloxamer biofilm model. Ann Clin Microbiol Antimicrob 2007;6(2).

  14. Gilbert P, Jones MV, Allison DG, Heys S, Maria T, Wood P. The use of poloxamer hydrogels for the assessment of biofilm susceptibility towards biocide treatments. J Appl Microbiol. 1998;85:985–90.

    PubMed  Article  CAS  Google Scholar 

  15. Lenaerts V, Triqueneaux C, Rieg-Falson F, Couvreur P. Temperature-dependent rheological behavior of pluronic F-127 aqueous solutions. Int J Pharm. 1987;39:121–7.

    Article  CAS  Google Scholar 

  16. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk susceptibility tests. NCCLS2002.

  17. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol. 1999;37(6):1771–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Matsumoto.

About this article

Cite this article

Yamada, H., Koike, N., Ehara, T. et al. Measuring antimicrobial susceptibility of Pseudomonas aeruginosa using Poloxamer 407 gel. J Infect Chemother 17, 195–199 (2011). https://doi.org/10.1007/s10156-010-0109-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10156-010-0109-x

Keywords

  • Pseudomonas aeruginosa
  • Antimicrobial susceptibility
  • Biofilm
  • Surfactant