Skip to main content

Blood cultures: key elements for best practices and future directions

Abstract

Bloodstream infections (BSI) cause significant morbidity and mortality among populations worldwide. Blood cultures (BCs) are regarded as the “gold standard” for diagnosis of bacteremia and are among the most important functions of the clinical microbiology laboratory. Significant changes in the methods and techniques of obtaining BCs have occurred since the first inception of BCs into clinical practice. Aside from significant improvements of established, conventional technology, new assays for diagnosis of bacteremia and fungemia, particularly those involving molecular techniques, are now available. BCs must be collected under sterile conditions and guidelines for appropriate collection, processing, and results reporting of BCs have been established. This review provides comprehensive information on optimal BC practices for laboratories, utilizing traditional approaches and emerging technology. As laboratories and clinicians must appreciate the key factors affecting the use of these techniques, improved communication between laboratory personnel and clinicians regarding such elements as duration of incubation, workup of contaminants and critical action value reporting will greatly improve the diagnostic approach to BSI.

This is a preview of subscription content, access via your institution.

References

  1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–10.

    PubMed  Article  CAS  Google Scholar 

  2. Magadia RR, Weinstein MP. Laboratory diagnosis of bacteremia and fungemia. Infect Dis Clin N Am. 2001;15:1009–24.

    Article  CAS  Google Scholar 

  3. Engel C, Brunkhorst FM, Bone HG, Brunkhorst R, Gerlach H, Grond S, et al. Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Med. 2007;33:606–18.

    PubMed  Article  Google Scholar 

  4. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546–54.

    PubMed  Article  Google Scholar 

  5. Diekema DJ, Beekmann SE, Chapin KC, Morel KA, Munson E, Doern GV. Epidemiology and outcome of nosocomial and community-onset bloodstream infection. J Clin Microbiol. 2003;41:3655–60.

    PubMed  Article  CAS  Google Scholar 

  6. Kung H, Hoyert DL, Xu J, Murphy S. Deaths: final data for 2005. Natl Vital Stat Rep. 2005;56:1–120.

    Google Scholar 

  7. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. Surviving sepsis campaign: international; guidelines for management of severe sepsis and septic shock. Crit Care Med. 2008;36:296–327.

    PubMed  Article  Google Scholar 

  8. Weinstein MP, Towns ML, Quartey SM, Mirrett S, Reimer LG, Reller LB, et al. The clinical significance of positive blood cultures in the 1990s: a prospective comprehensive evaluation of the microbiology, epidemiology, and outcome of bacteremia and fungemia in adults. Clin Infect Dis. 1997;24:584–602.

    PubMed  CAS  Google Scholar 

  9. Leibovici L, Shraga I, Drucker M, Konigsberger H, Samra Z, Pitlik SD. The benefit of appropriate empiric al antibiotic treatment in patients with bloodstream infection. J Intern Med. 1998;244:379–86.

    PubMed  Article  CAS  Google Scholar 

  10. Lodise TP, McKinnon PS, Swiderski L, Rybak MJ. Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin Infect Dis. 2003;36:1418–23.

    PubMed  Article  Google Scholar 

  11. Zaragoza R, Artero A, Camarena JJ, Sancho S, Gonzales R, Nogueira JM. The influence of inadequate empirical antimicrobial treatment on patients with bloodstream infections in an intensive care unit. Clin Microbiol Infect. 2003;9:412–8.

    PubMed  Article  CAS  Google Scholar 

  12. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ATS/SIS International sepsis definitions conference. Crit Care Med. 2003;31:1250–6.

    PubMed  Article  Google Scholar 

  13. CLSI. Principles and procedures for blood cultures. Approved guideline (M47-A), Vol. 27, No. 17. Wayne: Clinical and Laboratory Standards Institute; 2007.

  14. Wilson ML. Blood cultures: introduction. Clin Lab Med. 1994;14:1–7.

    PubMed  Google Scholar 

  15. Makadon HJ, Bor D, Friedland G, Dasse P, Komaroff AL, Aronson MD. Febrile inpatients: house officers’ use of blood cultures. J Gen Intern Med. 1987;2:293–7.

    PubMed  Article  CAS  Google Scholar 

  16. Poses RM, Anthony M. When you hear hoof beats: physicians overvalue recent experience when diagnosing bacteremia. Clin Res. 1989;37:781A.

    Google Scholar 

  17. Bennett IL, Beeson RB. Bacteremia: a consideration of some experimental and clinical aspects. Yale J Biol Med. 1954;262:241–62.

    Google Scholar 

  18. Bryan CS. Clinical implications of positive blood cultures. Clin Microbiol Rev. 1989;2:329–53.

    PubMed  CAS  Google Scholar 

  19. Bates DW, Cook EF, Goldman L, Lee TH. Predicting bacteremia in hospitalized patients. A prospectively validated model. Ann Intern Med. 1990;113:495–500.

    PubMed  CAS  Google Scholar 

  20. Bates DW, Lee TH. Rapid classification of positive blood culture: prospective validation of a multivariate algorithm. JAMA. 1992;267:1962–6.

    PubMed  Article  CAS  Google Scholar 

  21. Bates DW, Sands K, Miller E, Lanken PN, Hibberd PL, Graman PS, et al. Predicting bacteremia in patients with sepsis syndrome. J Infect Dis. 1997;176:1538–51.

    PubMed  Article  CAS  Google Scholar 

  22. Li J, Plorde JL, Carlson LG. Effects of volume and periodicity on blood cultures. J Clin Microbiol. 1994;32:2829–31.

    PubMed  CAS  Google Scholar 

  23. Riedel S, Bourbeau P, Swartz B, Brecher S, Carroll KC, Stamper PD, et al. Timing of specimen collection for blood cultures from febrile patients with bacteremia. J Clin Microbiol. 2008;46:1381–5.

    PubMed  Article  Google Scholar 

  24. Fontanarosa PB, Kaeberlein FJ, Gerson LW, Thomson RB. Difficulty in predicting bacteremia in elderly emergency patients. Ann Emerg Med. 1992;21:842–8.

    PubMed  Article  CAS  Google Scholar 

  25. Gleckman R, Hibert D. Afebrile bacteremia: a phenomenon in geriatric patients. JAMA. 1982;248:1478–81.

    PubMed  Article  CAS  Google Scholar 

  26. Lee CC, Chen SY, Chang IJ, Chen SC, Wu SC. Comparison of clinical manifestations and outcome of community-acquired bloodstream infections among the oldest old, elderly, and adult patients. Medicine. 2007;86:138–44.

    PubMed  Article  CAS  Google Scholar 

  27. Dorn GL, Burson GG, Haynes JR. Blood culture technique based on centrifugation: clinical evaluation. J Clin Microbiol. 1976;3:258–63.

    PubMed  CAS  Google Scholar 

  28. Hall MM, Ilstrup DM, Washington JA. Effect of volume of blood culture collected on detection of bacteremia. J Clin Microbiol. 1976;3:643–5.

    PubMed  CAS  Google Scholar 

  29. Tenney J, Reller LB, Mirrett S. Controlled evaluation of the volume of blood cultured in detection of bacteremia and fungemia. J Clin Microbiol. 1982;15:558–61.

    PubMed  CAS  Google Scholar 

  30. Plorde JJ, Tenover FC, Carlson LG. Specimen volume versus yield in the BACTEC blood culture system. J Clin Microbiol. 1985;22:292–5.

    PubMed  CAS  Google Scholar 

  31. Weinstein MP. Current blood culture methods and systems: clinical concepts, technology, and interpretation of results. Clin Infect Dis. 1996;23:40–6.

    PubMed  CAS  Google Scholar 

  32. Weinstein MP, Murphy JR, Reller LB, Lichtenstein KA. The clinical significance of positive blood cultures: a comprehensive analysis of 500 episodes of bacteremia and fungemia in adults. II. Clinical observations with special reference to factors influencing prognosis. Rev Infect Dis. 1983;5:54–70.

    PubMed  CAS  Google Scholar 

  33. Bouza E, Sousa D, Rodriguez-Creixems M, Lechuz JG, Munoz P. Is the volume of blood cultures still a significant factor in the diagnosis of bloodstream infections? J Clin Microbiol. 2007;45:2765–9.

    PubMed  Article  Google Scholar 

  34. Cockerill FR, Wilson JW, Vetter EA, Goodman KM, Torgerson CA, Harmsen WS, et al. Optimal testing parameters for blood cultures. Clin Infect Dis. 2004;38:1724–30.

    PubMed  Article  Google Scholar 

  35. Lee A, Mirrett S, Reller LB, Weistein MP. Detection of bloodstream infections in adults: how many blood cultures are needed? J Clin Microbiol. 2007;45:3546–8.

    PubMed  Article  Google Scholar 

  36. Kennaugh JK, Gregory WW, Powell KR, Hendley JO. The effect of dilution during culture on detection of low concentrations of bacteria in blood. Pediatr Infect Dis. 1984;3:317–8.

    PubMed  Article  CAS  Google Scholar 

  37. Paisley JW, Lauer BA. Pediatric blood cultures. Clin Lab Med. 1994;14:17–30.

    PubMed  CAS  Google Scholar 

  38. Kellogg JA, Manzella JP, Bankert DA. Frequency of low-level bacteremia from birth to fifteen years of age. J Clin Microbiol. 2000;38:2181–5.

    PubMed  CAS  Google Scholar 

  39. Kaditis AG, O’Marcaigh AS, Rhodes KH, Weaver AL, Henry NK. Yield of positive blood cultures in pediatric oncology patients by a new method of blood culture collection. Pediatr Infect Dis. 1996;15:615–20.

    Article  CAS  Google Scholar 

  40. Reimer LG, Wilson ML, Weinstein MP. Update on detection of bacteremia and fungemia. Clin Microbiol Rev. 1997;10:444–65.

    PubMed  CAS  Google Scholar 

  41. Salventi JF, Davies TA, Randall EL, Whitaker S, Waters JR. Effect of blood dilution on recovery of organisms from clinical blood cultures in medium containing sodium polyanethol sulfonate. J Clin Microbiol. 1979;9:248–52.

    PubMed  CAS  Google Scholar 

  42. Aukenthaler R, Istrup DM, Washington JA. Comparison of recovery or organisms from blood cultures diluted 10% (volume/volume) and 20% (volume/volume). J Clin Microbiol. 1982;15:860–4.

    Google Scholar 

  43. Staneck JL, Vincent S. Inhibition of Neisseria gonorrhoeae by sodium polyanetholsulfonate. J Clin Microbiol. 1981;13:463–7.

    PubMed  CAS  Google Scholar 

  44. Reimer LG, Reller LB. Effect of sodium polyanetholsulfonate on the recovery of Gardnerella vaginalis from blood culture media. J Clin Microbiol. 1985;21:686–8.

    PubMed  CAS  Google Scholar 

  45. Reimer LG, Reller LB, Wang WL, Mirrett S. Controlled evaluation of trypticase soy broth with and without gelatin and yeast extract in the detection of bacteremia and fungemia. Diagn Microbiol Infect Dis. 1987;8:19–24.

    PubMed  Article  CAS  Google Scholar 

  46. Mirrett S, Reller LB, Petti CA, Woods CW, Vazirani B, Sivadas R, Weinstein MP. Controlled clinical comparison of BacT/ALERT standard aerobic medium with BACTEC standard aerobic medium for culturing blood. J Clin Microbiol. 2003;41:2391–4.

    PubMed  Article  Google Scholar 

  47. CLSI/NCCLS. Quality control for commercially prepared microbiological culture media. Approved standard (M22-A3). 3rd ed. Wayne: Clinical and Laboratory Standards Institute; 2004.

  48. Ibrahim EH, Sherman G, Ward S, Fraser VJ, Kollef MH. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest. 2000;118:146–55.

    PubMed  Article  CAS  Google Scholar 

  49. McArthur RD, Miller M, Albertson T, Panacek E, Johnson D, Reh L, et al. Adequacy of early empiric antibiotic treatment and survival in severe sepsis: experience from the MONARCS trial. Clin Infect Dis. 2004;38:284–8.

    Article  Google Scholar 

  50. Herzke CA, Chen LF, Anderson DJ, Choi Y, Sexton DJ, Kaye KS. Empirical antimicrobial therapy for bloodstream infection due to methicillin-resistant Staphylococcus aureus: no better than a coin toss. Infect Control Hosp Epidemiol. 2009;30:1057–61.

    PubMed  Article  Google Scholar 

  51. Jorgensen JH, Mirrett S, McDonald LC, Murray PR, Weinstein MP, Fune J, et al. Controlled clinical laboratory comparison of BACTEC plus aerobic/F resin medium with BacT/Alert aerobic FAN medium for detection of bacteremia and fungemia. J Clin Microbiol. 1997;35:53–8.

    PubMed  CAS  Google Scholar 

  52. Doern GV, Barton A, Rao S. Controlled comparative evaluation of BacT/Alert FAN and ESP 80A aerobic media as means for detecting bacteremia and fungemia. J Clin Microbiol. 1998;36:2686–9.

    PubMed  CAS  Google Scholar 

  53. Flayhart D, Borek AP, Wakefield T, Dick J, Carroll KC. Comparison of BACTEC PLUS blood culture media to BacT/Alert FA blood culture media for detection of bacterial pathogens in samples containing therapeutic levels of antibiotics. J Clin Microbiol. 2007;45:816–21.

    PubMed  Article  CAS  Google Scholar 

  54. Nzaeko BC, Al-Qasabi SS. Evaluation of the neutralizing capacity of the BACTEC medium for some antibiotics. Br J Biomed Sci. 2004;61:171–4.

    Google Scholar 

  55. Vigano EF, Vasconi E, Agrappi C, Clerici P. Use of simulated blood cultures for time to detection comparison between BacT/ALERT™ and BACTEC™ 9240 blood culture systems. Diagn Microbiol Infect Dis. 2002;44:235–40.

    PubMed  Article  Google Scholar 

  56. Evans MR, Truant AL, Kostman J, Locke L. The detection of positive blood cultures by the BACTEC NR660. The clinical importance of four-day versus seven-day testing. Diagn Microbiol Infect Dis. 1991;14:107–10.

    PubMed  Article  CAS  Google Scholar 

  57. Hardy DJ, Hulbert BB, Migneault PC. Time to detection of positive BacT/Alert blood cultures and lack of need for routine subculture of 5- to 7-day negative cultures. J Clin Microbiol. 1992;10:2743–5.

    Google Scholar 

  58. Wilson ML, Mirrett S, Reller LB, Weinstein MP, Reimer LG. Recovery of clinically important microorganisms from the BacT/Alert blood culture system does not require testing for seven days. Diagn Microbiol Infect Dis. 1993;16:31–4.

    PubMed  Article  CAS  Google Scholar 

  59. Doern GV, Brueggemann AB, Dunne WM, Jenkins SG, Halstead DC, McLaughlin JC. Four-day incubation period for blood culture bottles processed with the Difco ESP blood culture system. J Clin Microbiol. 1997;35:1290–2.

    PubMed  CAS  Google Scholar 

  60. Bourbeau PP, Pohlman JK. Three days of incubation may be sufficient for routine blood cultures with BacT/Alert FAN blood culture bottles. J Clin Microbiol. 2001;39:2079–82.

    PubMed  Article  CAS  Google Scholar 

  61. Bourbeau PP, Foltzer M. Routine incubation of BacT/Alert FA and FN blood culture bottles for more than 3 days may not be necessary. J Clin Microbiol. 2005;43:2506–9.

    PubMed  Article  Google Scholar 

  62. Durack DT, Lukes AS, Bright DK, et al. New criteria for diagnosis of infective endocarditis: utilization of specific echocardiographic findings. Am J Med. 1994;96:200–9.

    PubMed  Article  CAS  Google Scholar 

  63. Washington JA. The role of the microbiology laboratory in the diagnosis and antimicrobial treatment of infective endocarditis. Mayo Clin Proc. 1982;57:22–32.

    PubMed  Google Scholar 

  64. Geraci JE, Greip PR, Wilkowske CJ, Wilson WR, Washington JA. Cardiobacterium hominis endocarditis: four cases with clinical and laboratory observations. Mayo Clin Proc. 1978;53:49–53.

    PubMed  CAS  Google Scholar 

  65. Baron EJ, Scott JD, Tompkins LS. Prolonged incubation and extensive subculturing do not increase recovery of clinically significant microorganisms from standard automated blood cultures. Clin Infect Dis. 2005;41:1677–80.

    PubMed  Article  Google Scholar 

  66. Petti CA, Bhally HS, Weinstein MP. Utility of extended blood culture incubation for isolation of Haemophilus, Actinobacillus, Cardiobacterium, Eikinella, and Kingella organisms: a retrospective multicenter evaluation. J Clin Microbiol. 2006;44:257–9.

    PubMed  Article  Google Scholar 

  67. Houpikian P, Raoult D. Diagnostic methods: current best practices and guidelines for identification of difficult-to-culture pathogens in infective endocarditis. Infect Dis Clin N Am. 2002;16:377–92.

    Article  Google Scholar 

  68. Lombardi DP, Engleberg NC. Anaerobic bacteremia: incidence, patient characteristics, and clinical significance. Am J Med. 1992;92:53–60.

    PubMed  Article  CAS  Google Scholar 

  69. Goldstein E. Anaerobic bacteremia. Clin Infect Dis. 1996;23(Suppl 1):S97–101.

    PubMed  Google Scholar 

  70. Dorsher CW, Rosenblatt JE, Wilson WR, Istrup DM. Anaerobic bacteremia: decreasing rate over a 15-year period. Rev Infect Dis. 1991;13:633–6.

    PubMed  CAS  Google Scholar 

  71. Morris AJ, Wilson ML, Mirrett S, Reller LB. Rationale for selective use of anaerobic blood cultures. J Clin Microbiol. 1993;31:2110–3.

    PubMed  CAS  Google Scholar 

  72. Sharp SE, McLaughlin JC, Goodman JM, Moore J, Spanos SM, Keller DW, et al. Clinical assessment of anaerobic isolates from blood cultures. Diagn Microbiol Infect Dis. 1993;17:19–22.

    PubMed  Article  CAS  Google Scholar 

  73. Murray PR, Traynor P, Hopson D. Critical assessment of blood culture techniques: analysis of recovery of obligate and facultative anaerobes, strict aerobic bacteria, and fungi in aerobic and anaerobic blood culture bottles. J Clin Microbiol. 1992;30:1462.

    PubMed  CAS  Google Scholar 

  74. Riley JA, Heiter BJ, Bourbeau PP. Comparison of recovery of blood culture isolates from two BacT/Alert FAN aerobic blood culture bottles with recovery from one FAN aerobic bottle and one FAN anaerobic bottle. J Clin Microbiol. 2003;41:213–7.

    PubMed  Article  Google Scholar 

  75. Lassmann B, Gustafson DR, Wood CM, Rosenblatt JE. Reemergence of anaerobic bacteremia. Clin Infect Dis. 2007;44:895–900.

    PubMed  Article  Google Scholar 

  76. Nguyen MH, Yu VL, Morris AJ, McDermott L, Wagner MW, Harrell L, et al. Antimicrobial resistance and clinical outcome of Bacteroides bacteremia: findings of a multicenter prospective observational trial. Clin Infect Dis. 2000;30:870–6.

    PubMed  Article  CAS  Google Scholar 

  77. Hecht DW. Anaerobes: antibiotic resistance, clinical significance, and the role of susceptibility testing. Anaerobe. 2006;12:115–21.

    PubMed  Article  CAS  Google Scholar 

  78. Beekmann SE, Diekema DJ, Chapin KC, Doern GV. Effects of rapid detection of bloodstream infections on length of hospitalization and hospital charges. J Clin Microbiol. 2003;41:3119–25.

    PubMed  Article  CAS  Google Scholar 

  79. Kerremans JJ, van der Bij AK, Goessens W, Verbrugh HA, Vos MC. Immediate incubation of blood cultures outside routine laboratory hours of operation accelerates antibiotic switching. J Clin Microbiol. 2009;47:3520–3.

    PubMed  Article  CAS  Google Scholar 

  80. Sautter RL, Bills AR, Lang DL, Ruschell G, Heiter BJ, Bourbeau PP. Effects of delayed-entry conditions on the recovery and detection of microorganisms from BacT/Alert and BACTEC blood culture bottles. J Clin Microbiol. 2006;44:1245–9.

    PubMed  Article  CAS  Google Scholar 

  81. Munson EL, Diekema DJ, Beekmann SE, Chapin KC, Doern GV. Detection and treatment of bloodstream infection: laboratory reporting and antimicrobial management. J Clin Microbiol. 2003;41:495–7.

    PubMed  Article  Google Scholar 

  82. Hautala T, Syrjala H, Lehtinen V, Kauma H, Kauppila J, Kujala P, et al. Blood culture Gram stain and clinical categorization based empirical antimicrobial therapy of bloodstream infection. Int J Antimicrob Agents. 2005;25:329–33.

    PubMed  Article  CAS  Google Scholar 

  83. Bouza E, Sousa D, Munoz P, Rodriguez-Creixems M, Fron C, Lechuz JG. Bloodstream infections: a trial of the impact of different methods of reporting positive blood culture results. Clin Infect Dis. 2004;39:1161–9.

    PubMed  Article  Google Scholar 

  84. Valles J, Rello J, Ochagavia A, Garnacho J, Alcala MA. Community-acquired bloodstream infection in critically ill adult patients: impact of shock and inappropriate antibiotic therapy on survival. Chest. 2003;123:1615–24.

    PubMed  Article  Google Scholar 

  85. Archibald LK, Pallangyo K, Kazembe P, Reller LB. Blood culture contamination in Tanzania, Malawi, and the United States: a microbiological tale of three cities. J Clin Microbiol. 2006;44:1425–9.

    Article  Google Scholar 

  86. Bates DW, Goldman L, Lee TH. Contaminant blood cultures and resource utilization: the true consequences of false-positive results. JAMA. 1991;265:365–9.

    PubMed  Article  CAS  Google Scholar 

  87. Surdulescu T, Utamsingh D, Shekar R. Phlebotomy teams reduce blood culture contamination rate and save money. Clin Perform Qual Health Care. 1998;6:60–2.

    PubMed  CAS  Google Scholar 

  88. Waltzman ML, Harper M. Financial and clinical impact of false-positive blood culture results. Clin Infect Dis. 2001;33:296–9.

    PubMed  Article  CAS  Google Scholar 

  89. MacGregor RR, Beaty HN. Evaluation of positive blood cultures. Guidelines for early differentiation of contaminated from valid positive cultures. Arch Intern Med. 1972;130:84–7.

    PubMed  Article  CAS  Google Scholar 

  90. Richter SS, Beekmann SE, Croco JL, Diekema DJ, Koontz FP, Pfaller MA, Doern GV. Minimizing the workup of blood culture contaminants: implementation and evaluation of a laboratory-based algorithm. J Clin Microbiol. 2002;40:2437–44.

    PubMed  Article  CAS  Google Scholar 

  91. Rupp ME, Archer GL. Coagulase-negative staphylococci: pathogens associated with medical progress. Clin Infect Dis. 1994;19:231–43.

    PubMed  CAS  Google Scholar 

  92. Mirrett S, Weinstein MP, Reimer LG, Wilson ML, Reller LB. Relevance of the number of positive bottles in determining clinical significance of coagulase-negative staphylococci in blood cultures. J Clin Microbiol. 2001;39:3279–81.

    PubMed  Article  CAS  Google Scholar 

  93. Kirchhoff LV, Sheagren JN. Epidemiology and clinical significance of blood cultures positive for coagulase-negative staphylococcus. Infect Control. 1985;6(12):479–86.

    PubMed  CAS  Google Scholar 

  94. Lee CC, Lin WJ, Shih HI, Wu CJ, Chen PL, Lee HC, et al. Clinical significance of potential contaminants in blood cultures among patients in a medical center. J Microbiol Immunol Infect. 2007;40:438–44.

    PubMed  Google Scholar 

  95. Tokars JI. Predictive value of blood cultures positive for coagulase-negative staphylococci: implications for patient care and health care quality assurance. Clin Infect Dis. 2004;39:333–41.

    PubMed  Article  Google Scholar 

  96. Edwards JR, Peterson KD, Andrus ML, Dudeck MA, Pollock DA, Horan TC. National healthcare Safety Network (NHSN) report, data summary for 2006 through 2007, issued November 2008. Am J Infect Control. 2008;36:609–26.

    PubMed  Article  Google Scholar 

  97. National Nosocomial Infections Surveillance (NNIS). System report, data summary from January 1992 to June 2004, issued October 2004. Am J Infect Control. 2004;32:470–85.

    Article  Google Scholar 

  98. Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of healthcare-associated infections in the acute care setting. Am J Infect Control. 2008;36:309–32.

    PubMed  Article  Google Scholar 

  99. McKibben L, Horan TC, Tokars JI, Fowler G, Cardo DM, Pearson ML, et al. Guidance on public reporting of healthcare-associated infections: recommendations of the healthcare infection control practices advisory committee. Am J Infect Control. 2005;33:217–26.

    PubMed  Article  Google Scholar 

  100. Rosenthal VD, Maki DG, Jamulitrat S, Medeiros EA, Todi SK, Gomez DY, INICC Members. International nosocomial infection control consortium (INICC) report, data summary for 2003–2008, issued June 2009. Am J Infect Control. 2010;38:95–106.

    PubMed  Article  Google Scholar 

  101. Little JR, Murray PR, Traynor PS, Spitznagel E. A randomized trial of povidone-iodine compared with iodine tincture for venipuncture site disinfection: effects on rates of blood culture contamination. Am J Med. 1999;107:119–25.

    PubMed  Article  CAS  Google Scholar 

  102. Mimoz O, Karim A, Mercat A, Cosseron M, Falissard B, Parker F, et al. Chlorhexidine compared with povidone-iodine as skin preparation before blood culture: a randomized controlled trial. Ann Intern Med. 1999;131:834–7.

    PubMed  CAS  Google Scholar 

  103. Barenfanger J, Drake C, Lawhorn J, Verhulst SJ. Comparison of chlorhexidine and tincture of iodine for skin antisepsis in preparation of blood culture collection. J Clin Microbiol. 2004;42:2216–7.

    PubMed  Article  CAS  Google Scholar 

  104. Calfee DP, Farr BM. Comparison of four antiseptic preparations for skin antisepsis in the prevention of contamination of percutaneously drawn blood cultures: a randomized trial. J Clin Microbiol. 2002;40:1660–5.

    PubMed  Article  CAS  Google Scholar 

  105. Weinbaum FI, Lavie S, Danek M, Sixsmith D, Heinrich GF, Mills SS. Doing it right the first time: quality improvement and the contaminant blood culture. J Clin Microbiol. 1997;35:563–656.

    PubMed  CAS  Google Scholar 

  106. Wilson ML, Weinstein MP, Mirrett S, Reimer LG, Fernando C, Meredith FT, Reller LB. Comparison of iodophor and alcohol pledges versus the Medi-Flex Blood Culture Prep Kit II for preventing contamination of blood cultures. J Clin Microbiol. 2000;38:4665–7.

    PubMed  CAS  Google Scholar 

  107. Gander RM, Byrd L, DeCreszendo M, Hirany S, Bowen M, Baughman J. Impact of blood cultures drawn by phlebotomy on contamination rates and health care costs in a hospital emergency department. J Clin Microbiol. 2009;47:1021–4.

    PubMed  Article  Google Scholar 

  108. Mancini N, Carletti S, Ghidoli N, Cichero P, Burioni R, Clementi M. The era of molecular and other non-culture based methods in diagnosis of sepsis. Clin Microbiol Rev. 2010;23:235–51.

    PubMed  Article  CAS  Google Scholar 

  109. Sturm PD, Kwa D, Vos FJ, Bartels CJ, Schulin T. Performance of two tube coagulase methods for rapid identification of Staphylococcus aureus from blood cultures and their impact on antimicrobial management. Clin Microbiol Infect Dis. 2008;14:510–3.

    Article  CAS  Google Scholar 

  110. Qian Q, Eichelberger K, Kirby JE. Rapid identification of Staphylococcus aureus in blood cultures by use of the direct tube coagulase test. J Clin Microbiol. 2007;45:2267–9.

    PubMed  Article  Google Scholar 

  111. Chapin K, Musgnug M. Evaluation of three rapid methods for the direct identification of Staphylococcus aureus from positive blood cultures. J Clin Microbiol. 2003;41:4324–7.

    PubMed  Article  Google Scholar 

  112. Ratner HB, Stratton CW. Thermonuclease test for same-day identification of Staphylococcus aureus in blood cultures. J Clin Microbiol. 1985;21:995–6.

    PubMed  CAS  Google Scholar 

  113. Kaplan NM. Use of thermonuclease testing to identify Staphylococcus aureus by direct examination of blood cultures. East Mediterr Health J. 2003;9:185–90.

    PubMed  CAS  Google Scholar 

  114. Lagace-Wiens PR, Alfa MJ, Manickam K, Karlowsky JA. Thermostable DNase is superior to tube coagulase for direct detection of Staphylococcus aureus in positive blood cultures. J Clin Microbiol. 2007;45:3478–9.

    PubMed  Article  Google Scholar 

  115. Marvin LF, Roberts MA, Fay LB. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. Clin Chim Acta. 2003;337:11–21.

    PubMed  Article  CAS  Google Scholar 

  116. Forrest GN, Mehta S, Weekes E, Lincalis DP, Johnson JK, Venezia RA. Impact of rapid in situ hybridization testing on coagulase-negative staphylococci positive blood cultures. J Antimicrob Chemother. 2006;58:154–8.

    PubMed  Article  CAS  Google Scholar 

  117. Forrest GN, Roghmann MC, Toombs LS, Johnson JK, Weekes E, Lincalis DP, Venezia RA. Peptide nucleic acid fluorescent in situ hybridization for hospital-acquired enterococcal bacteremia: delivering earlier effective antimicrobial therapy. Antimicrob Agents Chemother. 2008;52:3558–63.

    PubMed  Article  CAS  Google Scholar 

  118. Forrest GN, Mankes K, Jabra-Rizk MA, Weekes E, Johnson JK, Lincalis DP, Venezia RA. Peptide nucleic acid fluorescence in situ hybridization-based identification of Candida albicans and its impact on mortality and antifungal therapy costs. J Clin Microbiol. 2006;44:3381–3.

    PubMed  Article  CAS  Google Scholar 

  119. Alexander BD, Ashley ED, Reller LB, Reed SD. Cost savings with implementation of PNA FISH testing for identification of Candida albicans in blood cultures. Diagn Microbiol Infect Dis. 2006;54:277–82.

    PubMed  Article  CAS  Google Scholar 

  120. Davis TE, Fuller DD. Direct identification of bacterial isolates in blood cultures by using a DNA probe. J Clin Microbiol. 1991;29:2193–6.

    PubMed  CAS  Google Scholar 

  121. Lindholm L, Sarkkinen H. Direct identification of gram-positive cocci from routine cultures by using AccuProbe tests. J Clin Microbiol. 2004;42:5609–13.

    PubMed  Article  CAS  Google Scholar 

  122. Stamper PS, Cai M, Howard T, Speser S, Carroll KC. Clinical validation of the molecular-based BD GeneOhm™ StaphSR for the direct detection of Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus in positive blood cultures. J Clin Microbiol. 2007;45:2191–6.

    PubMed  Article  Google Scholar 

  123. Grobner S, Dion M, Plante M, Kempf VAJ. Evaluation of the BD GeneOhm StaphSR assay for detection of methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolates from spiked positive blood culture bottles. J Clin Microbiol. 2009;47:1689–94.

    PubMed  Article  CAS  Google Scholar 

  124. Snyder JW, Munier GK, Heckman SA, Camp P, Overman TL. Failure of the BD GeneOhm StaphSR assay for direct detection of methicillin-resistant and methicillin-susceptible Staphylcoccus aureus isolates in positive blood cultures collected in the United States. J Clin Microbiol. 2009;47:3747–8.

    PubMed  Article  Google Scholar 

  125. Munson E, Kramme T, Culver A, Hryciuk JE, Schell RF. Cost-effective modification of a commercial PCR-assay for detection of methicillin-resistant/susceptible Staphylococcus aureus from positive blood cultures. J Clin Microbiol. 2010. doi:10.1128/JCM.02463-09.

  126. Wolk DM, Struelens MJ, Pancholi P, Davis T, Della-Latta P, Fuller D. Rapid detection of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in wound specimens and blood cultures: Multicenter preclinical evaluation of the Cepheid Xpert MRSA/SA skin and soft tissue and blood culture assays. J Clin Microbiol. 2009;47:823–6.

    PubMed  Article  CAS  Google Scholar 

  127. Gröbner S, Kempf VAJ. Rapid detection of methicillin-resistant staphylococci by real-time PCR directly from positive blood culture bottles. Eur J Clin Microbiol Infect Dis. 2007;26:751–4.

    PubMed  Article  CAS  Google Scholar 

  128. Lin S, Yang S. Molecular methods for pathogen detection in blood. Lancet. 2010;375:178–9.

    PubMed  Article  Google Scholar 

  129. Wolk DM. ID 54. Performance of the Ibis BCA (Bacteria Candida and Antimicrobial Resistance) Assay for identification of bacteria and Candida sp. from blood culture bottles. In: Abstracts of the 15th annual meeting of the association for molecular pathology, Orlando, Florida; 2009.

  130. Mayr BM, Kobold U, Moczko M, Nyeki A, Koch T, Huber CG. Identification of bacteria by polymerase chain reaction followed by liquid chromatography-mass spectrometry. Anal Chem. 2005;77:4563–70.

    PubMed  Article  CAS  Google Scholar 

  131. Tissari P, Zumla A, Tarkka E, Mero S, Savolainen L, Vaara M, et al. Accurate and rapid identification of bacterial species from positive blood cultures with a DNA-based microarray platform: an observational study. Lancet. 2010;375:224–30.

    PubMed  Article  CAS  Google Scholar 

  132. Lehmann LE, Hunfeld KP, Emrich T, Haberhausen G, Wissing H, Hoeft A, Stuber F. A multiplex real-time PCR assay for rapid detection and differential of 25 bacterial and fungal pathogens from whole blood samples. Med Microbiol Immunol. 2008;197:313–24.

    PubMed  Article  CAS  Google Scholar 

  133. Mancini N, Clerici N, Diotti R, Perotti M, Ghidoli N, DeMarco D, et al. Molecular diagnosis of sepsis in neutropenic patients with haematological malignancies. J Medical Microbiol. 2008;57:601–4.

    Article  Google Scholar 

  134. Wellinghausen N, Kochem AJ, Disqué C, Mühl H, Gebert S, Winter J, et al. Diagnosis of bacteremia in whole-blood samples by use of a commercial universal 16S rRNA gene-based PCR and sequence analysis. J Clin Microbiol. 2009;47:2759–65.

    PubMed  Article  CAS  Google Scholar 

  135. Takala A, Jousela I, Olkkola KT, Jansson SE, Leirisalo-Repo M, Takkunen O, et al. Systemic inflammatory response syndrome without systemic inflammation in acutely ill patients admitted to hospital in a medical emergency. Clin Sci (Lond). 1999;96:287–95.

    Article  CAS  Google Scholar 

  136. Takala A, Jousela I, Jansson SE, Olkkola KT, Takkunen O, Orpana A, et al. Markers of systemic inflammation predicting organ failure in community-acquired septic shock. Clin Sci Lond. 1999;97:529–38.

    PubMed  Article  CAS  Google Scholar 

  137. Takala A, Nupponen I, Kylanpaa-Back ML, Repo H. Markers of inflammation in sepsis. Ann Med. 2002;34:614–23.

    PubMed  Article  CAS  Google Scholar 

  138. Chirouze C, Schuhmacher H, Rabaud C, Gil H, Khayat N, Estavoyer JM, et al. Low serum procalcitonin level accurately predicts the absence of bacteremia in adult patients with acute fever. Clin Infect Dis. 2002;35:156–61.

    PubMed  Article  CAS  Google Scholar 

  139. Aalto H, Takala A, Kautiainen H, Repo H. Laboratory markers of systemic inflammation as predictors of bloodstream infection in acutely ill patients admitted to hospital in medical emergency. Eur J Clin Microbiol Infect Dis. 2004;23:699–704.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Riedel.

About this article

Cite this article

Riedel, S., Carroll, K.C. Blood cultures: key elements for best practices and future directions. J Infect Chemother 16, 301–316 (2010). https://doi.org/10.1007/s10156-010-0069-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10156-010-0069-1

Keywords

  • Blood culture
  • Blood culture contamination
  • Blood culture volume
  • Bacteremia
  • Nucleic acid amplification testing
  • Aerobic and anaerobic blood cultures