Skip to main content

Advertisement

Log in

Stereotactic navigation using registration based on intra-abdominal landmarks in robotic-assisted lateral pelvic lymph node dissection

  • Multimedia Article
  • Published:
Techniques in Coloproctology Aims and scope Submit manuscript

Abstract

Background

We carried out robot-assisted lateral pelvic lymph node dissection (LPLND) for rectal cancer with a stereotactic navigation system. The purpose of this study was to evaluate the accuracy and feasibility of the system.

Methods

We constructed a navigation system based on the Polaris Spectra optical tracking device (Northern Digital Inc., Canada) and the open-source software 3D Slicer (version 3.8.1; http://www.slicer.org). We used the landmark-based registration method for patient-to-image registration. Body surface landmarks and intra-abdominal landmarks were used. We evaluated the time required for registration and target registration error (TRE; the distance between corresponding points after registration) for the root of the superior gluteal artery the root of the obturator or superior vesical artery, and the obturator foramen during minimally invasive LPLND for rectal cancer. Five patients who had LPLND for rectal cancer at the University of Tokyo Hospital between September 2020 and May 2021 were enrolled.

Results

The mean time required for registration was 49 s with the body surface landmarks and 88 s with the intra-abdominal landmarks. The mean TRE improved markedly when the registration was performed using intra-abdominal landmarks. The mean TRE of the root of the superior gluteal artery, the root of the obturator or superior vesical artery, and the obturator foramen were 55.8 mm, 53.4 mm, and 55.2 mm with the body surface landmarks and 11.8 mm, 10.0 mm, and 12.6 mm with the intra-abdominal landmarks, respectively. There were no adverse events related to the registration process.

Conclusions

When stereotactic navigation systems are used for minimally invasive LPLND, the use of intra-abdominal landmarks for registration is feasible and may allow simpler and more accurate navigation than the use of body surface landmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nakanishi R, Yamaguchi T, Akiyoshi T, Nagasaki T, Nagayama S, Mukai T, Ueno M, Fukunaga Y, Konishi T (2020) Laparoscopic and robotic lateral lymph node dissection for rectal cancer. Surg Today 50(3):209–216

    Article  Google Scholar 

  2. Kiyomatsu T, Ishihara S, Murono K, Otani K, Yasuda K, Nishikawa T, Tanaka T, Hata K, Kawai K, Nozawa H, Yamaguchi H, Watanabe T (2016) Anatomy of the middle rectal artery: a review of the historical literature. Surg Today 47:14–19

    Article  Google Scholar 

  3. Toda S, Kuroyanagi H, Matoba S, Hiramatsu K, Okazaki N, Tate T, Tomizawa K, Hanaoka Y, Moriyama J (2018) Laparoscopic treatment of rectal cancer and lateral pelvic lymph node dissection: are they obsolete? Minerva Chir 73(6):558–573

    Article  Google Scholar 

  4. Zelhart M, Kaiser AM (2018) Robotic versus laparoscopic versus open colorectal surgery: towards defining criteria to the right choice. Surg Endosc 32(1):24–38

    Article  Google Scholar 

  5. Ogura A, Akiyoshi T, Nagasaki T, Konishi T, Fujimoto Y, Nagayama S, Fukunaga Y, Ueno M, Kuroyanagi H (2017) Feasibility of laparoscopic total mesorectal excision with extended lateral pelvic lymph node dissection for advanced lower rectal cancer after preoperative chemoradiotherapy. World J Surg 41(3):868–875

    Article  Google Scholar 

  6. Kawahara H, Watanabe K, Enomoto H, Tomoda M, Akiba T, Yanaga K (2015) Sentinel node navigation surgery for lower rectal cancer. Anticancer Res 35(6):3489–3493

    PubMed  Google Scholar 

  7. Horie H, Koinuma K, Ito H, Sadatomo A, Naoi D, Kono Y, Inoue Y, Morimoto M, Tahara M, Lefor AK, Sata N, Sasaki T, Sugimoto H (2018) Utility of preoperative 3-D simulation of laparoscopic lateral pelvic lymph node dissection for advanced rectal cancer: surgical outcomes of 10 initial cases. Asian J Endosc Surg 11(4):355–361

    Article  Google Scholar 

  8. Hojo D, Murono K, Nozawa H, Kawai K, Hata K, Tanaka T, Ishihara S (2020) Utility of a three-dimensional printed pelvic model for lateral pelvic lymph node dissection. Int J Colorectal Dis 35(5):905–910

    Article  Google Scholar 

  9. Saito Y, Sugimoto M, Imura S, Morine Y, Ikemoto T, Iwahashi S, Yamada S, Shimada M (2019) Intraoperative 3D hologram support with mixed reality techniques in liver surgery. Ann Surg 271:e4–e7

    Article  Google Scholar 

  10. Kiyomatsu H, Ma L, Wang J, Kiyomatsu T, Tsukihara H, Kobayashi E, Sakuma I, Ishihara S (2021) Deformation of the pelvic arteries caused by pneumoperitoneum and postural changes in an animal model. In Vivo 35(1):275–281

    Article  Google Scholar 

  11. Ochiai K, Kobayashi E, Tsukihara H, Nozawa H, Kawai K, Sasaki K, Murono K, Ishihara S, Sakuma I (2021) Stereotactic navigation system for laparoscopic lateral pelvic lymph node dissection. Dis Colon Rectum 64(6):e372–e377

    PubMed  Google Scholar 

  12. Watanabe T, Muro K, Ajioka Y, Hashiguchi Y, Ito Y, Saito Y, Hamaguchi T, Ishida H, Ishiguro M, Ishihara S, Kanemitsu Y, Kawano H, Kinugasa Y, Kokudo N, Murofushi K, Nakajima T, Oka S, Sakai Y, Tsuji A, Uehara K, Ueno H, Yamazaki K, Yoshida M, Yoshino T, Boku N, Fujimori T, Itabashi M, Koinuma N, Morita T, Nishimura G, Sakata Y, Shimada Y, Takahashi K, Tanaka S, Tsuruta O, Yamaguchi T, Yamaguchi N, Tanaka T, Kotake K, Sugihara KC (2018) Japanese Society for Cancer of the, and Rectum, Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2016 for the treatment of colorectal cancer. Int J Clin Oncol 23(1):1–34

    Article  Google Scholar 

  13. Watanabe T, Hata K (2016) Robotic surgery for rectal cancer with lateral lymph node dissection. Br J Surg 103(13):1755–1757

    Article  CAS  Google Scholar 

  14. Kikinis R, Pieper SD, Vosburgh KG (2014) 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support. In: Jolesz FA (ed) Intraoperative imaging and image-guided therapy. Springer, New York, pp 277–289

    Chapter  Google Scholar 

  15. Murono K, Kawai K, Kazama S, Ishihara S, Yamaguchi H, Sunami E, Kitayama J, Watanabe T (2015) Anatomy of the inferior mesenteric artery evaluated using 3-dimensional CT angiography. Dis Colon Rectum 58(2):214–219

    Article  Google Scholar 

  16. Moghari MH, Abolmaesumi P (2009) Distribution of fiducial registration error in rigid-body point-based registration. IEEE Trans Med Imaging 28(11):1791–1801

    Article  Google Scholar 

  17. Kok END, van Veen R, Groen HC, Heerink WJ, Hoetjes NJ, van Werkhoven E, Beets GL, Aalbers AGJ, Kuhlmann KFD, Nijkamp J, Ruers TJM (2020) Association of image-guided navigation with complete resection rate in patients with locally advanced primary and recurrent rectal cancer: a nonrandomized controlled trial. JAMA Netw Open 3(7):e208522

    Article  Google Scholar 

  18. Elhusseini M, Aly EH (2020) Lateral pelvic lymph node dissection in the management of locally advanced low rectal cancer: summary of the current evidence. Surg Oncol 35:418–425

    Article  Google Scholar 

  19. Zhou SC, Tian YT, Wang XW, Zhao CD, Ma S, Jiang J, Li EN, Zhou HT, Liu Q, Liang JW, Zhou ZX, Wang XS (2019) Application of indocyanine green-enhanced near-infrared fluorescence-guided imaging in laparoscopic lateral pelvic lymph node dissection for middle-low rectal cancer. World J Gastroenterol 25(31):4502–4511

    Article  Google Scholar 

  20. Wijsmuller AR, Romagnolo LGC, Agnus V, Giraudeau C, Melani AGF, Dallemagne B, Marescaux J (2018) Advances in stereotactic navigation for pelvic surgery. Surg Endosc 32(6):2713–2720

    Article  CAS  Google Scholar 

  21. Okada T, Kawada K, Sumii A, Itatani Y, Hida K, Hasegawa S, Sakai Y (2020) Stereotactic navigation for rectal surgery. Dis Colon Rectum 63(5):693–700

    Article  Google Scholar 

  22. Nijkamp J, Kuhlmann KFD, Ivashchenko O, Pouw B, Hoetjes N, Lindenberg MA, Aalbers AGJ, Beets GL, Van Coevorden F, Kok N, Ruers TJM (2018) Prospective study on image-guided navigation surgery for pelvic malignancies. J Surg Oncol 119:510–517

    Article  Google Scholar 

  23. Hayashi Y, Misawa K, Hawkes DJ, Mori K (2016) Progressive internal landmark registration for surgical navigation in laparoscopic gastrectomy for gastric cancer. Int J Comput Assist Radiol Surg 11(5):837–845

    Article  Google Scholar 

  24. Kwak JM, Romagnolo L, Wijsmuller A, Gonzalez C, Agnus V, Lucchesi FR, Melani A, Marescaux J, Dallemagne B (2019) Stereotactic pelvic navigation with augmented reality for transanal total mesorectal excision. Dis Colon Rectum 62(1):123–129

    Article  Google Scholar 

Download references

Funding

This study was supported by Canon Medical Systems (no. 170300001258), the Japan Society for the Promotion of Science-National Natural Foundation of China joint research project (no. 120197410) and JST (Japan Science and technology Agency) COI Grant number JPMJCE1304.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ochiai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the ethics committee of the University of Tokyo (No. 2019281NI).

Informed consent

Informed consent was obtained from all patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 73285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochiai, K., Kobayashi, E., Sasaki, K. et al. Stereotactic navigation using registration based on intra-abdominal landmarks in robotic-assisted lateral pelvic lymph node dissection. Tech Coloproctol 26, 735–743 (2022). https://doi.org/10.1007/s10151-022-02643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10151-022-02643-8

Keywords

Navigation