Skip to main content

Advertisement

Log in

Current trends in the promising immune checkpoint inhibition and radiotherapy combination for locally advanced and metastatic urothelial carcinoma

  • Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Locally advanced and metastatic urothelial carcinoma (UC) remains a challenging malignancy, though several novel therapeutic drugs have been developed in recent years. Over the past decade, immune checkpoint inhibitors (ICI) have shifted the paradigm of therapeutic strategies for UC; however, only a limited number of patients respond to ICI. Since radiotherapy (RT) is widely known to induce systemic immune activation, it may boost the efficacy of ICI. Conversely, RT also causes exhaustion of cytotoxic T cells, and the activation and recruitment of immunosuppressive cells; ICI may help overcome these immunosuppressive effects. Therefore, the combination of ICI and RT has attracted attention in recent years. The therapeutic benefits of this combination therapy and its optimal regimen have not yet been determined through prospective studies. Therefore, this review article aimed to provide an overview of the current preclinical and clinical studies that illustrate the underlying mechanisms and explore the optimization of the RT regimen along with the ICI and RT combination sequence. We also analyzed ongoing prospective studies on ICI and RT combination therapies for metastatic UC. We noted that the tumor response to ICI and RT combination seemingly differs among cancer types. Thus, our findings highlight the need for well-designed prospective trials to determine the optimal combination of ICI and RT for locally advanced and metastatic UC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Moschini M, D’Andrea D, Korn S et al (2017) Characteristics and clinical significance of histological variants of bladder cancer. Nat Rev Urol 14(11):651–668. https://doi.org/10.1038/nrurol.2017.125

    Article  PubMed  Google Scholar 

  2. Witjes JA, Bruins HM, Cathomas R et al (2021) European association of urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 guidelines. Eur Urol 79(1):82–104. https://doi.org/10.1016/j.eururo.2020.03.055

    Article  CAS  PubMed  Google Scholar 

  3. Flaig TW, Spiess PE, Agarwal N et al (2020) Bladder cancer, Version 3.2020, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 18(3):329–354. https://doi.org/10.6004/jnccn.2020.0011

    Article  PubMed  Google Scholar 

  4. Powles T, Park SH, Voog E et al (2020) Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. N Engl J Med 383(13):1218–1230. https://doi.org/10.1056/NEJMoa2002788

    Article  CAS  PubMed  Google Scholar 

  5. Bellmunt J, de Wit R, Vaughn DJ et al (2017) Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 376(11):1015–1026. https://doi.org/10.1056/NEJMoa1613683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rowshanravan B, Halliday N, Sansom DM (2018) CTLA-4: a moving target in immunotherapy. Blood 131(1):58–67. https://doi.org/10.1182/blood-2017-06-741033

    Article  CAS  PubMed  Google Scholar 

  7. Sharma P, Siefker-Radtke A, de Braud F et al (2019) Nivolumab alone and with ipilimumab in previously treated metastatic urothelial carcinoma: checkmate 032 Nivolumab 1 mg/kg plus Ipilimumab 3 mg/kg expansion cohort results. J Clin Oncol 37(19):1608–1616. https://doi.org/10.1200/jco.19.00538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Apolo AB, Nadal R, Girardi DM et al (2020) Phase I study of cabozantinib and nivolumab alone or with ipilimumab for advanced or metastatic urothelial carcinoma and other genitourinary tumors. J Clin Oncol 38(31):3672–3684. https://doi.org/10.1200/jco.20.01652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu S, Zhang T, Zheng L et al (2021) Combination strategies to maximize the benefits of cancer immunotherapy. J Hematol Oncol 14(1):156. https://doi.org/10.1186/s13045-021-01164-5

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wei J, Montalvo-Ortiz W, Yu L et al (2021) Sequence of αPD-1 relative to local tumor irradiation determines the induction of abscopal antitumor immune responses. Sci Immunol. https://doi.org/10.1126/sciimmunol.abg0117

    Article  PubMed  PubMed Central  Google Scholar 

  11. Reits EA, Hodge JW, Herberts CA et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203(5):1259–1271. https://doi.org/10.1084/jem.20052494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deng L, Liang H, Xu M et al (2014) STING-dependent cytosolic DNA sensing promotes radiation-induced type i interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41(5):843–852. https://doi.org/10.1016/j.immuni.2014.10.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jagodinsky JC, Morris ZS (2020) Priming and propagating anti-tumor immunity: focal hypofractionated radiation for in situ vaccination and systemic targeted radionuclide theranostics for immunomodulation of tumor microenvironments. Semin Radiat Oncol 30(2):181–186. https://doi.org/10.1016/j.semradonc.2019.12.008

    Article  PubMed  PubMed Central  Google Scholar 

  14. McBride S, Sherman E, Tsai CJ et al (2021) Randomized phase ii trial of nivolumab with stereotactic body radiotherapy versus nivolumab alone in metastatic head and neck squamous cell carcinoma. J Clin Oncol 39(1):30–37. https://doi.org/10.1200/jco.20.00290

    Article  CAS  PubMed  Google Scholar 

  15. Lee NY, Ferris RL, Psyrri A et al (2021) Avelumab plus standard-of-care chemoradiotherapy versus chemoradiotherapy alone in patients with locally advanced squamous cell carcinoma of the head and neck: a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Oncol 22(4):450–462. https://doi.org/10.1016/s1470-2045(20)30737-3

    Article  CAS  PubMed  Google Scholar 

  16. Theelen W, Peulen HMU, Lalezari F et al (2019) Effect of pembrolizumab after stereotactic body radiotherapy vs pembrolizumab alone on tumor response in patients with advanced non-small cell lung cancer: results of the PEMBRO-RT phase 2 randomized clinical trial. JAMA Oncol 5(9):1276–1282. https://doi.org/10.1001/jamaoncol.2019.1478

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mole RH (1953) Whole body irradiation; radiobiology or medicine? Br J Radiol 26(305):234–241. https://doi.org/10.1259/0007-1285-26-305-234

    Article  CAS  PubMed  Google Scholar 

  18. Brix N, Tiefenthaller A, Anders H et al (2017) Abscopal, immunological effects of radiotherapy: narrowing the gap between clinical and preclinical experiences. Immunol Rev 280(1):249–279. https://doi.org/10.1111/imr.12573

    Article  CAS  PubMed  Google Scholar 

  19. Demaria S, Kawashima N, Yang AM et al (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 11(2 Pt 1):728–734

    Article  CAS  PubMed  Google Scholar 

  20. Park SS, Dong H, Liu X et al (2015) PD-1 restrains radiotherapy-induced abscopal effect. Cancer Immunol Res 3(6):610–619. https://doi.org/10.1158/2326-6066.Cir-14-0138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sahoo BM, Banik BK, Borah P et al (2022) Reactive oxygen species (ROS): key components in cancer therapies. Anticancer Agents Med Chem 22(2):215–222. https://doi.org/10.2174/1871520621666210608095512

    Article  CAS  PubMed  Google Scholar 

  22. Sharabi AB, Nirschl CJ, Kochel CM et al (2015) Stereotactic radiation therapy augments antigen-specific PD-1-mediated antitumor immune responses via cross-presentation of tumor antigen. Cancer Immunol Res 3(4):345–355. https://doi.org/10.1158/2326-6066.Cir-14-0196

    Article  CAS  PubMed  Google Scholar 

  23. Dovedi SJ, Cheadle EJ, Popple AL et al (2017) Fractionated radiation therapy stimulates antitumor immunity mediated by both resident and infiltrating polyclonal t-cell populations when combined with PD-1 blockade. Clin Cancer Res 23(18):5514–5526. https://doi.org/10.1158/1078-0432.Ccr-16-1673

    Article  CAS  PubMed  Google Scholar 

  24. Twyman-Saint Victor C, Rech AJ, Maity A et al (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520(7547):373–377. https://doi.org/10.1038/nature14292

    Article  CAS  PubMed  Google Scholar 

  25. Chakraborty M, Abrams SI, Camphausen K et al (2003) Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol 170(12):6338–6347. https://doi.org/10.4049/jimmunol.170.12.6338

    Article  CAS  PubMed  Google Scholar 

  26. Kuwabara M, Takahashi K, Inanami O (2003) Induction of apoptosis through the activation of SAPK/JNK followed by the expression of death receptor Fas in X-irradiated cells. J Radiat Res 44(3):203–209. https://doi.org/10.1269/jrr.44.203

    Article  CAS  PubMed  Google Scholar 

  27. Yoshimoto Y, Oike T, Okonogi N et al (2015) Carbon-ion beams induce production of an immune mediator protein, high mobility group box 1, at levels comparable with X-ray irradiation. J Radiat Res 56(3):509–514. https://doi.org/10.1093/jrr/rrv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Galluzzi L, Humeau J, Buqué A et al (2020) Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol 17(12):725–741. https://doi.org/10.1038/s41571-020-0413-z

    Article  PubMed  Google Scholar 

  29. Vermeer DW, Spanos WC, Vermeer PD et al (2013) Radiation-induced loss of cell surface CD47 enhances immune-mediated clearance of human papillomavirus-positive cancer. Int J Cancer 133(1):120–129. https://doi.org/10.1002/ijc.28015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Spitz DR, Azzam EI, Li JJ et al (2004) Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev 23(3–4):311–322. https://doi.org/10.1023/B:CANC.0000031769.14728.bc

    Article  CAS  PubMed  Google Scholar 

  31. Tigano M, Vargas DC, Tremblay-Belzile S et al (2021) Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance. Nature 591(7850):477–481. https://doi.org/10.1038/s41586-021-03269-w

    Article  CAS  PubMed  Google Scholar 

  32. Gasser S, Orsulic S, Brown EJ et al (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436(7054):1186–1190. https://doi.org/10.1038/nature03884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ellsworth SG (2018) Field size effects on the risk and severity of treatment-induced lymphopenia in patients undergoing radiation therapy for solid tumors. Adv Radiat Oncol 3(4):512–519. https://doi.org/10.1016/j.adro.2018.08.014

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sato H, Niimi A, Yasuhara T et al (2017) DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat Commun 8(1):1751. https://doi.org/10.1038/s41467-017-01883-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu CT, Chen WC, Chang YH et al (2016) The role of PD-L1 in the radiation response and clinical outcome for bladder cancer. Sci Rep 6:19740. https://doi.org/10.1038/srep19740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kachikwu EL, Iwamoto KS, Liao YP et al (2011) Radiation enhances regulatory T cell representation. Int J Radiat Oncol Biol Phys 81(4):1128–1135. https://doi.org/10.1016/j.ijrobp.2010.09.034

    Article  PubMed  Google Scholar 

  37. Deng L, Liang H, Burnette B et al (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124(2):687–695. https://doi.org/10.1172/jci67313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hellevik T, Berzaghi R, Lode K et al (2021) Immunobiology of cancer-associated fibroblasts in the context of radiotherapy. J Transl Med 19(1):437. https://doi.org/10.1186/s12967-021-03112-w

    Article  PubMed  PubMed Central  Google Scholar 

  39. van Hooren L, Handgraaf SM, Kloosterman DJ et al (2023) CD103(+) regulatory T cells underlie resistance to radio-immunotherapy and impair CD8(+) T cell activation in glioblastoma. Nat Cancer 4(5):665–681. https://doi.org/10.1038/s43018-023-00547-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liang H, Deng L, Hou Y et al (2017) Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nat Commun 8(1):1736. https://doi.org/10.1038/s41467-017-01566-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. De Martino M, Daviaud C, Diamond JM et al (2021) Activin A Promotes Regulatory T-cell-Mediated Immunosuppression in irradiated Breast Cancer. Cancer Immunol Res 9(1):89–102. https://doi.org/10.1158/2326-6066.Cir-19-0305

    Article  PubMed  Google Scholar 

  42. Hsieh RC, Krishnan S, Wu RC et al (2022) ATR-mediated CD47 and PD-L1 up-regulation restricts radiotherapy-induced immune priming and abscopal responses in colorectal cancer. Sci Immunol 7(72):eabl9330. https://doi.org/10.1126/sciimmunol.abl9330

    Article  CAS  PubMed  Google Scholar 

  43. Rompré-Brodeur A, Shinde-Jadhav S, Ayoub M et al (2020) PD-1/PD-L1 immune checkpoint inhibition with radiation in bladder cancer: in situ and abscopal effects. Mol Cancer Ther 19(1):211–220. https://doi.org/10.1158/1535-7163.Mct-18-0986

    Article  PubMed  Google Scholar 

  44. Chiang Y, Tsai YC, Wang CC et al (2022) Tumor-DERIVED C-C Motif ligand 2 induces the recruitment and polarization of tumor-associated macrophages and increases the metastatic potential of bladder cancer cells in the postirradiated microenvironment. Int J Radiat Oncol Biol Phys 114(2):321–333. https://doi.org/10.1016/j.ijrobp.2022.06.054

    Article  PubMed  Google Scholar 

  45. Shinde-Jadhav S, Mansure JJ, Rayes RF et al (2021) Role of neutrophil extracellular traps in radiation resistance of invasive bladder cancer. Nat Commun 12(1):2776. https://doi.org/10.1038/s41467-021-23086-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Watanabe T, Sato GE, Yoshimura M et al (2023) The mutual relationship between the host immune system and radiotherapy: stimulating the action of immune cells by irradiation. Int J Clin Oncol 28(2):201–208. https://doi.org/10.1007/s10147-022-02172-2

    Article  CAS  PubMed  Google Scholar 

  47. Gong J, Le TQ, Massarelli E et al (2018) Radiation therapy and PD-1/PD-L1 blockade: the clinical development of an evolving anticancer combination. J Immunother Cancer 6(1):46. https://doi.org/10.1186/s40425-018-0361-7

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sato H, Okonogi N, Nakano T (2020) Rationale of combination of anti-PD-1/PD-L1 antibody therapy and radiotherapy for cancer treatment. Int J Clin Oncol 25(5):801–809. https://doi.org/10.1007/s10147-020-01666-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shaverdian N, Lisberg AE, Bornazyan K et al (2017) Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol 18(7):895–903. https://doi.org/10.1016/s1470-2045(17)30380-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Antonia SJ, Villegas A, Daniel D et al (2018) Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med 379(24):2342–2350. https://doi.org/10.1056/NEJMoa1809697

    Article  CAS  PubMed  Google Scholar 

  51. Sundahl N, Vandekerkhove G, Decaestecker K et al (2019) Randomized phase 1 trial of pembrolizumab with sequential versus concomitant stereotactic body radiotherapy in metastatic urothelial carcinoma. Eur Urol 75(5):707–711. https://doi.org/10.1016/j.eururo.2019.01.009

    Article  CAS  PubMed  Google Scholar 

  52. Daro-Faye M, Kassouf W, Souhami L et al (2021) Combined radiotherapy and immunotherapy in urothelial bladder cancer: harnessing the full potential of the anti-tumor immune response. World J Urol 39(5):1331–1343. https://doi.org/10.1007/s00345-020-03440-4

    Article  PubMed  Google Scholar 

  53. Fukushima H, Kijima T, Fukuda S et al (2020) Impact of radiotherapy to the primary tumor on the efficacy of pembrolizumab for patients with advanced urothelial cancer: a preliminary study. Cancer Med 9(22):8355–8363. https://doi.org/10.1002/cam4.3445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fukushima H, Yoshida S, Kijima T et al (2021) Combination of cisplatin and irradiation induces immunogenic cell death and potentiates postirradiation anti-PD-1 treatment efficacy in urothelial carcinoma. Int J Mol Sci 22(2):535. https://doi.org/10.3390/ijms22020535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nishimura K, Nishio K, Hirosuna K et al (2022) Efficacy of pembrolizumab and comprehensive CD274/PD-L1 profiles in patients previously treated with chemoradiation therapy as radical treatment in bladder cancer. J Immunother Cancer 10(1):e003868. https://doi.org/10.1136/jitc-2021-003868

    Article  PubMed  PubMed Central  Google Scholar 

  56. Makrakis D, Talukder R, Diamantopoulos LN et al (2022) Association of prior local therapy and outcomes with programmed-death ligand-1 inhibitors in advanced urothelial cancer. BJU Int 130(5):592–603. https://doi.org/10.1111/bju.15603

    Article  CAS  PubMed  Google Scholar 

  57. Sano T, Aizawa R, Ito K et al (2023) Efficacy and tolerability of second-line pembrolizumab with radiation therapy in advanced urothelial carcinoma. Anticancer Res 43(5):2119–2126. https://doi.org/10.21873/anticanres.16373

    Article  CAS  PubMed  Google Scholar 

  58. Nakamori K, Yamazaki S, Komura K et al (2023) Concurrent palliative radiation with pembrolizumab for platinum-refractory urothelial carcinoma is associated with improved overall survival. Clin Transl Radiat Oncol 39:100558. https://doi.org/10.1016/j.ctro.2022.12.001

    Article  CAS  PubMed  Google Scholar 

  59. Voronova V, Vislobokova A, Mutig K et al (2022) Combination of immune checkpoint inhibitors with radiation therapy in cancer: a hammer breaking the wall of resistance. Front Oncol 12:1035884. https://doi.org/10.3389/fonc.2022.1035884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Golden EB, Frances D, Pellicciotta I et al (2014) Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 3:e28518. https://doi.org/10.4161/onci.28518

    Article  PubMed  PubMed Central  Google Scholar 

  61. Eke I, Aryankalayil MJ, Bylicky MA et al (2022) Long-term expression changes of immune-related genes in prostate cancer after radiotherapy. Cancer Immunol Immunother 71(4):839–850. https://doi.org/10.1007/s00262-021-03036-w

    Article  CAS  PubMed  Google Scholar 

  62. Lugade AA, Moran JP, Gerber SA et al (2005) Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 174(12):7516–7523. https://doi.org/10.4049/jimmunol.174.12.7516

    Article  CAS  PubMed  Google Scholar 

  63. Filatenkov A, Baker J, Mueller AM et al (2015) Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin Cancer Res 21(16):3727–3739. https://doi.org/10.1158/1078-0432.Ccr-14-2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dewan MZ, Galloway AE, Kawashima N et al (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15(17):5379–5388. https://doi.org/10.1158/1078-0432.Ccr-09-0265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schaue D, Ratikan JA, Iwamoto KS et al (2012) Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys 83(4):1306–1310. https://doi.org/10.1016/j.ijrobp.2011.09.049

    Article  CAS  PubMed  Google Scholar 

  66. Grapin M, Richard C, Limagne E et al (2019) Optimized fractionated radiotherapy with anti-PD-L1 and anti-TIGIT: a promising new combination. J Immunother Cancer 7(1):160. https://doi.org/10.1186/s40425-019-0634-9

    Article  PubMed  PubMed Central  Google Scholar 

  67. Morisada M, Clavijo PE, Moore E et al (2018) PD-1 blockade reverses adaptive immune resistance induced by high-dose hypofractionated but not low-dose daily fractionated radiation. Oncoimmunology 7(3):e1395996. https://doi.org/10.1080/2162402x.2017.1395996

    Article  CAS  PubMed  Google Scholar 

  68. Burnette BC, Liang H, Lee Y et al (2011) The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res 71(7):2488–2496. https://doi.org/10.1158/0008-5472.Can-10-2820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vanpouille-Box C, Alard A, Aryankalayil MJ et al (2017) DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun 8:15618. https://doi.org/10.1038/ncomms15618

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tholomier CMG, Shinde-Jadhav S, Ayoub M et al (2020) Optimizing sequence of therapy and radiation delivery when combined with PD-L1 immunecheckpoint inhibition in bladder cancer. J Urol 203(Supplement 4):e827–e828

    Google Scholar 

  71. Klug F, Prakash H, Huber PE et al (2013) Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24(5):589–602. https://doi.org/10.1016/j.ccr.2013.09.014

    Article  CAS  PubMed  Google Scholar 

  72. Barsoumian HB, Ramapriyan R, Younes AI et al (2020) Low-dose radiation treatment enhances systemic antitumor immune responses by overcoming the inhibitory stroma. J Immunother Cancer. https://doi.org/10.1136/jitc-2020-000537

    Article  PubMed  PubMed Central  Google Scholar 

  73. Herrera FG, Ronet C, Ochoa de Olza M et al (2022) Low-dose radiotherapy reverses tumor immune desertification and resistance to immunotherapy. Cancer Discov 12(1):108–133. https://doi.org/10.1158/2159-8290.Cd-21-0003

    Article  CAS  PubMed  Google Scholar 

  74. Postow MA, Callahan MK, Barker CA et al (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366(10):925–931. https://doi.org/10.1056/NEJMoa1112824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Golden EB, Demaria S, Schiff PB et al (2013) An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol Res 1(6):365–372. https://doi.org/10.1158/2326-6066.Cir-13-0115

    Article  PubMed  PubMed Central  Google Scholar 

  76. Buchwald ZS, Wynne J, Nasti TH et al (2018) Radiation, immune checkpoint blockade and the abscopal effect: a critical review on timing. Dose Fractionation Front Oncol 8:612. https://doi.org/10.3389/fonc.2018.00612

    Article  PubMed  Google Scholar 

  77. Wang SJ, Jhawar SR, Rivera-Nunez Z et al (2020) The association of radiation dose-fractionation and immunotherapy use with overall survival in metastatic melanoma patients. Cureus 12(6):e8767. https://doi.org/10.7759/cureus.8767

    Article  PubMed  PubMed Central  Google Scholar 

  78. Abuodeh Y, Venkat P, Kim S (2016) Systematic review of case reports on the abscopal effect. Curr Probl Cancer 40(1):25–37. https://doi.org/10.1016/j.currproblcancer.2015.10.001

    Article  PubMed  Google Scholar 

  79. Yu J, Green MD, Li S et al (2021) Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat Med 27(1):152–164. https://doi.org/10.1038/s41591-020-1131-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bauml JM, Mick R, Ciunci C et al (2019) Pembrolizumab after completion of locally ablative therapy for oligometastatic non-small cell lung cancer: a phase 2 trial. JAMA Oncol 5(9):1283–1290. https://doi.org/10.1001/jamaoncol.2019.1449

    Article  PubMed  PubMed Central  Google Scholar 

  81. Brooks ED, Chang JY (2019) Time to abandon single-site irradiation for inducing abscopal effects. Nat Rev Clin Oncol 16(2):123–135. https://doi.org/10.1038/s41571-018-0119-7

    Article  PubMed  Google Scholar 

  82. Friedhoff J, Schneider F, Jurcic C et al (2023) BAP1 and PTEN mutations shape the immunological landscape of clear cell renal cell carcinoma and reveal the intertumoral heterogeneity of T cell suppression: a proof-of-concept study. Cancer Immunol Immunother 72(6):1603–1618. https://doi.org/10.1007/s00262-022-03346-7

    Article  CAS  PubMed  Google Scholar 

  83. Hellevik T, Martinez-Zubiaurre I (2014) Radiotherapy and the tumor stroma: the importance of dose and fractionation. Front Oncol 4:1. https://doi.org/10.3389/fonc.2014.00001

    Article  PubMed  PubMed Central  Google Scholar 

  84. Doyen J, Picard A, Naghavi AO et al (2017) Clinical outcomes of metastatic melanoma treated with checkpoint inhibitors and multisite radiotherapy. JAMA Dermatol 153(10):1056–1059. https://doi.org/10.1001/jamadermatol.2017.2222

    Article  PubMed  PubMed Central  Google Scholar 

  85. Thompson RF, Maity A (2014) Radiotherapy and the tumor microenvironment: mutual influence and clinical implications. Adv Exp Med Biol 772:147–165. https://doi.org/10.1007/978-1-4614-5915-6_7

    Article  CAS  PubMed  Google Scholar 

  86. Vanneste BGL, Van Limbergen EJ, Dubois L et al (2020) Immunotherapy as sensitizer for local radiotherapy. Oncoimmunology 9(1):1832760. https://doi.org/10.1080/2162402x.2020.1832760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Young KH, Baird JR, Savage T et al (2016) Optimizing timing of immunotherapy improves control of tumors by hypofractionated radiation therapy. PLoS ONE 11(6):e0157164. https://doi.org/10.1371/journal.pone.0157164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hettich M, Lahoti J, Prasad S et al (2016) Checkpoint antibodies but not T cell-recruiting diabodies effectively synergize with TIL-inducing γ-irradiation. Cancer Res 76(16):4673–4683. https://doi.org/10.1158/0008-5472.Can-15-3451

    Article  CAS  PubMed  Google Scholar 

  89. Frey B, Rückert M, Weber J et al (2017) Hypofractionated irradiation has immune stimulatory potential and induces a timely restricted infiltration of immune cells in colon cancer tumors. Front Immunol 8:231. https://doi.org/10.3389/fimmu.2017.00231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dovedi SJ, Adlard AL, Lipowska-Bhalla G et al (2014) Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res 74(19):5458–5468. https://doi.org/10.1158/0008-5472.Can-14-1258

    Article  CAS  PubMed  Google Scholar 

  91. Qian JM, Yu JB, Kluger HM et al (2016) Timing and type of immune checkpoint therapy affect the early radiographic response of melanoma brain metastases to stereotactic radiosurgery. Cancer 122(19):3051–3058. https://doi.org/10.1002/cncr.30138

    Article  CAS  PubMed  Google Scholar 

  92. Ahmed KA, Kim S, Arrington J et al (2017) Outcomes targeting the PD-1/PD-L1 axis in conjunction with stereotactic radiation for patients with non-small cell lung cancer brain metastases. J Neurooncol 133(2):331–338. https://doi.org/10.1007/s11060-017-2437-5

    Article  CAS  PubMed  Google Scholar 

  93. Hassel JC, Schank TE, Smetak H et al (2022) Evaluation of radio-immunotherapy sequence on immunological responses and clinical outcomes in patients with melanoma brain metastases (ELEKTRA). Oncoimmunology 11(1):2066609. https://doi.org/10.1080/2162402x.2022.2066609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

TS, TM, and TK contributed to the study conception and design. TS, RS, RA, TW, and KM collected the related references and participated in discussion. The first draft of the manuscript was written by TS, and all the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Takashi Kobayashi.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sano, T., Saito, R., Aizawa, R. et al. Current trends in the promising immune checkpoint inhibition and radiotherapy combination for locally advanced and metastatic urothelial carcinoma. Int J Clin Oncol 28, 1573–1584 (2023). https://doi.org/10.1007/s10147-023-02421-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-023-02421-y

Keywords

Navigation