Skip to main content

Advertisement

Log in

Molecular targeted drugs, comprehensive classification and preclinical models for the implementation of precision immune oncology in hepatocellular carcinoma

  • Invited Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is a complex heterogeneous disease with high morbidity and mortality. Recent progress in molecular targeted drugs including multikinase inhibitors and immune checkpoint inhibitors has demonstrated substantial survival improvement in patients with advanced HCC, but it remains as a challenging issue to discover surrogate markers for precisely distinguishing responders and non-responders. Genome-based medicine has changed cancer treatment from empirical use of cytotoxic agents to theoretical use of molecular targeted drugs in various types of cancer, while not in HCC due to lack of druggable targets. Integrated genomic and transcriptomic analysis reveal that HCC is divided into three major subtypes, proliferative, CTNNB1-mutated and metabolic disease-associated, with distinctive molecular and immunological features, and an increasing number of studies provide evidence for the close correlation between the subtype and the response to molecular targeted drugs using both of clinical data and preclinical models. Dozens of immunocompetent mouse models, such as hydrodynamic tail vain injection models and implantable syngeneic models, reflect molecular characteristics and tumor immune microenvironment of the subtypes, and help us to evaluate the efficacy of single and combination therapies and understand the molecular mechanisms underlying vulnerability and resistance to them. Thus, the consensus classification and relevant preclinical models could accelerate the establishment of predictive biomarkers and the development of subtype-specific therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Llovet JM, Kelley RK, Villanueva A et al (2021) Hepatocellular carcinoma Nat Rev Dis Primers 7:6

    Article  PubMed  Google Scholar 

  2. Llovet JM, Ricci S, Mazzaferro V et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390

    Article  CAS  PubMed  Google Scholar 

  3. Cheng A, Kang Y, Chen Z et al (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10:25–34

    Article  CAS  PubMed  Google Scholar 

  4. Llovet JM, Montal R, Sia D et al (2018) Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol 15:599–616

    Article  PubMed  Google Scholar 

  5. Kudo M, Finn RS, Qin S et al (2018) Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 391:1163–1173

    Article  CAS  PubMed  Google Scholar 

  6. Bruix J, Qin S, Merle P et al (2017) Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 389:56–66

    Article  CAS  PubMed  Google Scholar 

  7. Abou-Alfa GK, Meyer T, Cheng A et al (2018) Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med 379:54–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu AX, Kang Y, Yen C et al (2019) Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 20:282–296

    Article  CAS  PubMed  Google Scholar 

  9. El-Khoueiry AB, Sangro B, Yau T et al (2017) Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389:2492–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yau T, Park J, Finn RS et al (2022) Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol 23:77–90

    Article  CAS  PubMed  Google Scholar 

  11. Sangro B, Sarobe P, Hervás-Stubbs S et al (2021) Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 18:525–543

    Article  PubMed  Google Scholar 

  12. Zhu AX, Finn RS, Edeline J et al (2018) Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol 19:940–952

    Article  PubMed  Google Scholar 

  13. Finn RS, Ryoo B, Merle P et al (2020) Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III trial. J Clin Oncol 38:193–202

    Article  CAS  PubMed  Google Scholar 

  14. Finn RS, Qin S, Ikeda M et al (2020) Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 382:1894–1905

    Article  CAS  PubMed  Google Scholar 

  15. Fukumura D, Kloepper J, Amoozgar Z et al (2018) Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol 15:325–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bruix J, Cheng A, Meinhardt G et al (2017) Prognostic factors and predictors of sorafenib benefit in patients with hepatocellular carcinoma: analysis of two phase III studies. J Hepatol 67:999–1008

    Article  CAS  PubMed  Google Scholar 

  17. Topalian SL, Taube JM, Anders RA et al (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng A, Qin S, Ikeda M et al (2022) Updated efficacy and safety data from IMbrave150: atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J Hepatol 76:862–873

    Article  CAS  PubMed  Google Scholar 

  19. Wang M, Herbst RS, Boshoff C (2021) Toward personalized treatment approaches for non-small-cell lung cancer. Nat Med 27:1345–1356

    Article  CAS  PubMed  Google Scholar 

  20. Schulze K, Imbeaud S, Letouzé E et al (2015) Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet 47:505–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rebouissou S, Nault J (2020) Advances in molecular classification and precision oncology in hepatocellular carcinoma. J Hepatol 72:215–229

    Article  CAS  PubMed  Google Scholar 

  22. Lee J, Chu I, Heo J et al (2004) Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology 40:667–676

    Article  CAS  PubMed  Google Scholar 

  23. Chiang DY, Villanueva A, Hoshida Y et al (2008) Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res 68:6779–6788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hoshida Y, Nijman SMB, Kobayashi M et al (2009) Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 69:7385–7392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boyault S, Rickman DS, Reyniès Ad et al (2007) Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45:42–52

    Article  CAS  PubMed  Google Scholar 

  26. Sia D, Jiao Y, Martinez-Quetglas I et al (2017) Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology 153:812–826

    Article  CAS  PubMed  Google Scholar 

  27. Shimada S, Mogushi K, Akiyama Y et al (2019) Comprehensive molecular and immunological characterization of hepatocellular carcinoma. EBioMedicine 40:457–470

    Article  PubMed  Google Scholar 

  28. Ziol M, Poté N, Amaddeo G et al (2018) Macrotrabecular-massive hepatocellular carcinoma: a distinctive histological subtype with clinical relevance. Hepatology 68:103–112

    Article  PubMed  Google Scholar 

  29. Calderaro J, Ziol M, Paradis V et al (2019) Molecular and histological correlations in liver cancer. J Hepatol 71:616–630

    Article  CAS  PubMed  Google Scholar 

  30. Kurebayashi Y, Matsuda K, Ueno A et al (2022) Immunovascular classification of HCC reflects reciprocal interaction between immune and angiogenic tumor microenvironments. Hepatology 75:1139–1153

    Article  PubMed  CAS  Google Scholar 

  31. Ueno A, Masugi Y, Yamazaki K et al (2014) OATP1B3 expression is strongly associated with Wnt/β-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J Hepatol 61:1080–1087

    Article  CAS  PubMed  Google Scholar 

  32. Pinyol R, Torrecilla S, Wang H et al (2021) Molecular characterisation of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. J Hepatol 75:865–878

    Article  CAS  PubMed  Google Scholar 

  33. Harding JJ, Nandakumar S, Armenia J et al (2019) Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin Cancer Res 25:2116–2126

    Article  CAS  PubMed  Google Scholar 

  34. Morita M, Nishida N, Sakai K et al (2021) Immunological microenvironment predicts the survival of the patients with hepatocellular carcinoma treated with anti-pd-1 antibody. Liver Cancer 10:380–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ruiz de Galarreta M, Bresnahan E, Molina-Sánchez P et al (2019) β-catenin activation promotes immune escape and resistance to anti-pd-1 therapy in hepatocellular carcinoma. Cancer Discov 9:1124–1141

    Article  CAS  PubMed  Google Scholar 

  36. Akasu M, Shimada S, Kabashima A et al (2021) Intrinsic activation of β-catenin signaling by CRISPR/Cas9-mediated exon skipping contributes to immune evasion in hepatocellular carcinoma. Sci Rep 11:16732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pfister D, Núñez NG, Pinyol R et al (2021) NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 592:450–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brown ZJ, Heinrich B, Greten TF (2018) Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research. Nat Rev Gastroenterol Hepatol 15:536–554

    Article  CAS  PubMed  Google Scholar 

  39. Bresnahan E, Lindblad KE, Ruiz de Galarreta M et al (2020) Mouse models of oncoimmunology in hepatocellular carcinoma. Clin Cancer Res 26:5276–5286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Connor F, Rayner TF, Aitken SJ et al (2018) Mutational landscape of a chemically-induced mouse model of liver cancer. J Hepatol 69:840–850

    Article  PubMed  PubMed Central  Google Scholar 

  41. Aydinlik H, Nguyen TD, Moennikes O et al (2001) Selective pressure during tumor promotion by phenobarbital leads to clonal outgrowth of beta-catenin-mutated mouse liver tumors. Oncogene 20:7812–7816

    Article  CAS  PubMed  Google Scholar 

  42. Murakami H, Sanderson ND, Nagy P et al (1993) Transgenic mouse model for synergistic effects of nuclear oncogenes and growth factors in tumorigenesis: interaction of c-myc and transforming growth factor alpha in hepatic oncogenesis. Cancer Res 53:1719–1723

    CAS  PubMed  Google Scholar 

  43. Harada N, Oshima H, Katoh M et al (2004) Hepatocarcinogenesis in mice with beta-catenin and Ha-ras gene mutations. Cancer Res 64:48–54

    Article  CAS  PubMed  Google Scholar 

  44. Wolf MJ, Adili A, Piotrowitz K et al (2014) Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell 26:549–564

    Article  CAS  PubMed  Google Scholar 

  45. Fujii M, Shibazaki Y, Wakamatsu K et al (2013) A murine model for non-alcoholic steatohepatitis showing evidence of association between diabetes and hepatocellular carcinoma. Med Mol Morphol 46:141–152

    Article  CAS  PubMed  Google Scholar 

  46. Horie Y, Suzuki A, Kataoka E et al (2004) Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 113:1774–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Itoh M, Suganami T, Nakagawa N et al (2011) Melanocortin 4 receptor-deficient mice as a novel mouse model of nonalcoholic steatohepatitis. Am J Pathol 179:2454–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xue W, Chen S, Yin H et al (2014) CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514:380–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kimura T, Kato Y, Ozawa Y et al (2018) Immunomodulatory activity of lenvatinib contributes to antitumor activity in the Hepa1-6 hepatocellular carcinoma model. Cancer Sci 109:3993–4002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee J, Chu I, Mikaelyan A et al (2004) Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat Genet 36:1306–1311

    Article  CAS  PubMed  Google Scholar 

  51. Chiyonobu N, Shimada S, Akiyama Y et al (2018) Fatty acid binding protein 4 (fabp4) overexpression in intratumoral hepatic stellate cells within hepatocellular carcinoma with metabolic risk factors. Am J Pathol 188:1213–1224

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Grants-in-Aid for Scientific Research (A; 19H01055) and Challenging Research (Exploratory; 20K21627) from the Ministry of Education, Culture, Sports, Science and Technology of Japan; Research Grant from the Princess Takamatsu Cancer Research Fund; P-CREATE (JP19cm0106540), and Program for Basic and Clinical Research on Hepatitis (JP21fk0210090, JP20fk0210060) from AMED (Japan Agency for Medical Research and Development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Tanaka.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimada, S., Tanaka, S. Molecular targeted drugs, comprehensive classification and preclinical models for the implementation of precision immune oncology in hepatocellular carcinoma. Int J Clin Oncol 27, 1101–1109 (2022). https://doi.org/10.1007/s10147-022-02174-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-022-02174-0

Keywords

Navigation