Skip to main content

Advertisement

Log in

Toward a new stage of PD-1 blockade cancer immunotherapy

  • Introduction to Review Articles
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Klein G, Klein E (2005) Surveillance against tumors—is it mainly immunological? Immunol Lett 100(1):29–33

    Article  CAS  PubMed  Google Scholar 

  2. Ishida Y, Agata Y, Shibahara K et al (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11(11):3887–3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nishimura H, Nose M, Hiai H et al (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11(2):141–151

    Article  CAS  PubMed  Google Scholar 

  4. Iwai Y, Ishida M, Tanaka Y et al (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99(19):12293–12297

    Article  CAS  PubMed  Google Scholar 

  5. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brahmer JR, Tykodi SS, Chow LQ et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blank CU, Haining WN, Held W et al (2019) Defining ‘T cell exhaustion’. Nat Rev Immunol 19(11):665–674

    Article  CAS  PubMed  Google Scholar 

  8. McLane LM, Abdel-Hakeem MS, Wherry EJ (2019) CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol 37:457–495

    Article  CAS  PubMed  Google Scholar 

  9. Chowdhury PS, Chamoto K, Kumar A et al (2018) PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8(+) T cells and facilitates anti-PD-1 therapy. Cancer Immunol Res 6(11):1375–1387

    Article  PubMed  Google Scholar 

  10. Bengsch B, Johnson AL, Kurachi M et al (2016) Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8(+) T cell exhaustion. Immunity 45(2):358–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  Google Scholar 

  12. Ozdemir BC, Pentcheva-Hoang T, Carstens JL et al (2014) Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25(6):719–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rhim AD, Oberstein PE, Thomas DH et al (2014) Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25(6):735–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu Y, Ikeda S, Sumida K et al (2018) Sipa1 deficiency unleashes a host-immune mechanism eradicating chronic myelogenous leukemia-initiating cells. Nat Commun 9(1):914

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bartoschek M, Oskolkov N, Bocci M et al (2018) Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat Commun 9(1):5150

    Article  PubMed  PubMed Central  Google Scholar 

  16. Carstens JL, Correa de Sampaio P, Yang D et al (2017) Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat Commun 8:15095

    Article  PubMed  PubMed Central  Google Scholar 

  17. Galon J, Angell HK, Bedognetti D et al (2013) The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39(1):11–26

    Article  CAS  PubMed  Google Scholar 

  18. Van den Eynde B, Lethe B, Van Pel A et al (1991) The gene coding for a major tumor rejection antigen of tumor P815 is identical to the normal gene of syngeneic DBA/2 mice. J Exp Med 173(6):1373–1384

    Article  PubMed  Google Scholar 

  19. Overman MJ, McDermott R, Leach JL et al (2017) Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 18(9):1182–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Minato N, Hattori M, Hamazaki Y (2020) Physiology and pathology of T-cell aging. Int Immunol. https://doi.org/10.1093/intimm/dxaa006

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagahiro Minato.

Ethics declarations

Conflict of interest

No author has any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minato, N. Toward a new stage of PD-1 blockade cancer immunotherapy. Int J Clin Oncol 25, 787–789 (2020). https://doi.org/10.1007/s10147-020-01643-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-020-01643-8

Navigation