Skip to main content

Therapeutic drug monitoring of regorafenib and its metabolite M5 can predict treatment efficacy and the occurrence of skin toxicities



Regorafenib is a multiple tyrosine kinase inhibitor, and the use of this drug is approved for the treatment of cancers that are resistant to chemotherapy, which include advanced colorectal cancer, gastrointestinal stromal tumor, and hepatocellular carcinoma. However, the drug causes adverse events, including skin toxicities that require dose modification in approximately 75% of cases. At present, the blood concentration of regorafenib is not assessed in clinical settings; thus, we recently developed a method that can assess the blood concentration of the drug using high-performance liquid chromatography.


We measured the trough blood concentrations (Ctrough) of regorafenib and its metabolites (M2 and M5) in 14 and 4 patients with advanced colorectal cancer and gastrointestinal stromal tumor, respectively, using high-performance liquid chromatography. Then, the correlation between the Ctrough and therapeutic outcomes of regorafenib was analyzed.


In patients who were receiving regorafenib 40–160 mg/day, the Ctrough values of regorafenib, M2, and M5 were 318–9467, 34–3594, and 38–3796 ng/mL, respectively. The difference in the values was significant. Although the specific factors influencing this difference were not elucidated, the Ctrough of regorafenib was extremely lower in some patients, even though the drug was administered at a standard dose, which may explain the lower response rate. Moreover, the Ctrough value of M5 was significantly correlated to the incidence of skin toxicities, which is the most frequent cause of dose modification.


The use of regorafenib may not be suitable in patients with a low Ctrough value. To prevent skin toxicities, the Ctrough value of M5 should be monitored.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Vogelstein B, Papadopoulos N, Velculescu VE et al (2013) Cancer genome landscapes. Science 339:1546–1558

    CAS  Article  Google Scholar 

  2. 2.

    Wilhelm SM, Dumas J, Adnane L et al (2011) Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer 129:245–255

    CAS  Article  Google Scholar 

  3. 3.

    Strumberg D, Scheulen ME, Schultheis B et al (2012) Regorafenib (BAY 73-4506) in advanced colorectal cancer: a phase I study. Br J Cancer 106:1722–1727

    CAS  Article  Google Scholar 

  4. 4.

    Grothey A, Van Cutsem E, Sobrero A et al (2013) Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381:303–312

    CAS  Article  Google Scholar 

  5. 5.

    Demetri GD, Reichardt P, Kang YK et al (2013) Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381:295–302

    CAS  Article  Google Scholar 

  6. 6.

    Bruix J, Qin S, Merle P et al (2017) Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 389:56–66

    CAS  Article  Google Scholar 

  7. 7.

    Eisen T, Joensuu H, Nathan PD et al (2012) Regorafenib for patients with previously untreated metastatic or unresectable renal-cell carcinoma: a single-group phase 2 trial. Lancet Oncol 13:1055–1062

    CAS  Article  Google Scholar 

  8. 8.

    Mross K, Frost A, Steinbild S et al (2012) A phase I dose-escalation study of regorafenib (BAY 73-4506), an inhibitor of oncogenic, angiogenic, and stromal kinases, in patients with advanced solid tumors. Clin Cancer Res 18:2658–2667

    CAS  Article  Google Scholar 

  9. 9.

    Strumberg D, Schultheis B (2012) Regorafenib for cancer. Expert Opin Investig Drugs 21:879–889

    CAS  Article  Google Scholar 

  10. 10.

    George S, Wang Q, Heinrich MC et al (2012) Efficacy and safety of regorafenib in patients with metastatic and/or unresectable GI stromal tumor after failure of imatinib and sunitinib: a multicenter phase II trial. J Clin Oncol 30:2401–2407

    CAS  Article  Google Scholar 

  11. 11.

    Yoshino T, Komatsu Y, Yamada Y et al (2015) Randomized phase III trial of regorafenib in metastatic colorectal cancer: analysis of the CORRECT Japanese and non-Japanese subpopulations. Investig New Drugs 33:740–750

    CAS  Article  Google Scholar 

  12. 12.

    Kort A, Durmus S, Sparidans RW et al (2015) Brain and testis accumulation of regorafenib is restricted by breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1). Pharm Res 32:2205–2216

    CAS  Article  Google Scholar 

  13. 13.

    Minami H, Sai K, Saeki M et al (2007) Irinotecan pharmacokinetics/pharmacodynamics and UGT1A genetic polymorphisms in Japanese: roles of UGT1A1* 6 and* 28. Pharmacogenet Genomics 17:497–504

    CAS  Article  Google Scholar 

  14. 14.

    Wakatsuki T, Suenaga M, Shinozaki E et al (2015) 2175 Genetic variants of UGT1A1 and 1A9 could be associated with regorafenib induced toxicity in Japanese patients with metastatic colorectal cancer. Eur J Cancer 51:S391–S392

    Article  Google Scholar 

  15. 15.

    Niioka T, Kagaya H, Miura M et al (2013) Pharmaceutical and genetic determinants for interindividual differences of tacrolimus bioavailability in renal transplant recipients. Eur J Clin Pharmacol 69:1659–1665

    CAS  Article  Google Scholar 

  16. 16.

    Sacré A, Lanthier N, Dano H et al (2016) Regorafenib induced severe toxic hepatitis: characterization and discussion. Liver Int 36:1590–1594

    Article  Google Scholar 

  17. 17.

    Fujita K, Miura M, Shibata H (2016) Quantitative determination of regorafenib and its two major metabolites in human plasma with high-performance liquid chromatography and ultraviolet detection. Biomed Chromatogr 30:1611–1617

    CAS  Article  Google Scholar 

  18. 18.

    Zhang X, Liu ZH, Zheng JM et al (2005) Influence of CYP3A5 and MDR1 polymorphisms on tacrolimus concentration in the early stage after renal transplantation. Clin Transpl 19:638–643

    Article  Google Scholar 

  19. 19.

    Haufroid V, Mourad M, Van Kerckhove V et al (2004) The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics 14:147–154

    CAS  Article  Google Scholar 

  20. 20.

    Thervet E, Anglicheau D, King B et al (2003) Impact of cytochrome P450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation 76:1233–1235

    CAS  Article  Google Scholar 

  21. 21.

    Ando Y, Saka H, Ando M et al (2000) Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res 60:6921–6926

    CAS  PubMed  Google Scholar 

  22. 22.

    Fukuen S, Fukuda T, Maune H et al (2002) Novel detection assay by PCR–RFLP and frequency of the CYP3A5 SNPs, CYP3A5* 3 and* 6, in a Japanese population. Pharmacogenet Genomics 12:331–334

    CAS  Article  Google Scholar 

  23. 23.

    Gao Y, Zhang LR, Fu Q (2008) CYP3A4* 1G polymorphism is associated with lipid-lowering efficacy of atorvastatin but not of simvastatin. Eur J Clin Pharmacol 64:877–882

    CAS  Article  Google Scholar 

  24. 24.

    Cascorbi I, Gerloff T, Johne A et al (2001) Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin Pharmacol Ther 69:169–174

    CAS  Article  Google Scholar 

  25. 25.

    Kobayashi D, Ieiri I, Hirota T et al (2005) Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta. Drug Metab Dispos 33:94–101

    CAS  Article  Google Scholar 

  26. 26.

    Wang D, Johnson AD, Papp AC et al (3435C) Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C %3e T affects mRNA stability. Pharmacogenet Genomics 15:693–704

    CAS  Article  Google Scholar 

  27. 27.

    Tanaka Y, Kitamura Y, Maeda K et al (2015) Quantitative analysis of the ABCG2 c.421C %3e A polymorphism effect on in vivo transport activity of breast cancer resistance protein (BCRP) using an intestinal absorption model. J Pharm Sci C 104:3039–3048

  28. 28.

    Belum VR, Wu S, Lacouture ME (2013) Risk of hand-foot skin reaction with the novel multikinase inhibitor regorafenib: a meta-analysis. Investig New Drugs 31:1078–1086

    CAS  Article  Google Scholar 

Download references


We thank Enago ( for their critical English editing.

Author information



Corresponding author

Correspondence to Hiroyuki Shibata.

Ethics declarations

Conflict of interest

No author has any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taguchi, D., Inoue, M., Fukuda, K. et al. Therapeutic drug monitoring of regorafenib and its metabolite M5 can predict treatment efficacy and the occurrence of skin toxicities. Int J Clin Oncol 25, 531–540 (2020).

Download citation


  • Colorectal cancer
  • Gastrointestinal stromal tumor
  • C trough
  • Regorafenib
  • Therapeutic drug monitoring