Skip to main content

Advertisement

Log in

FDG-PET reflects tumor viability on SUV in colorectal cancer liver metastasis

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Liver resection is the most effective procedure for colorectal cancer liver metastasis (CRLM); however, early recurrence is an important problem that affects the postoperative prognoses of patients with CRLM. We previously suggested a therapeutic algorithm for CRLM using fluorodeoxyglucose-positron emission tomography (FDG-PET) and revealed the applicability of FDG-PET in predicting the prognosis after liver resection of CRLM. In this study, we assessed the correlation between FDG-PET and biological viability such as proliferation or metabolic activity.

Methods

We retrospectively evaluated 61 patients who underwent hepatectomy for CRLM. We assessed hypoxia inducible factor-1α (HIF-1α), pyruvate kinase isozyme M2 (PKM2), glucose transporter 1 (GLUT1), and Ki-67 expression via immunohistochemistry and evaluated the correlation between standardized uptake value (SUV) and these factors.

Results

High HIF-1α, PKM2, and GLUT1 expression were positively correlated with high SUV expression (P = 0.0444, 0.0296, and 0.0245, respectively). Ki-67 and SUV were also positively correlated (P = 0.00164). HIF-1α expression and PKM2 expression were significantly correlated (P = 0.0430), and PKM2 expression and GLUT1 expression were extremely significantly correlated (P < 0.0001).

Conclusion

SUV reflected tumor proliferation or metabolic factors in CRLM. FDG-PET could be a useful modality for assessing tumor viability and may provide useful information regarding the appropriate treatment strategy for CRLM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akgül Ö, Çetinkaya E, Ersöz Ş et al (2014) Role of surgery in colorectal cancer liver metastases. World J Gastroenterol 20:6113–6122

    Article  Google Scholar 

  2. McNally SJ, Parks RW (2013) Surgery for colorectal liver metastases. Dig Surg 30:337–347

    Article  CAS  Google Scholar 

  3. Allard MA, Adam R, Giuliante F et al (2017) Long-term outcomes of patients with 10 or more colorectal liver metastases. Br J Cancer 117:604–611

    Article  CAS  Google Scholar 

  4. Simmonds PC, Primrose JN, Colquitt JL et al (2006) Surgical resection of hepatic metastases from colorectal cancer: a systematic review of published studies. Br J Cancer 94:982–999

    Article  CAS  Google Scholar 

  5. Fong Y, Fortner J, Sun RL et al (1999) Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg 230:309–318 (discussion 318–321)

    Article  CAS  Google Scholar 

  6. Hadden WJ, de Reuver PR, Brown K et al (2016) Resection of colorectal liver metastases and extra-hepatic disease: a systematic review and proportional meta-analysis of survival outcomes. HPB (Oxford) 18:209–220

    Article  Google Scholar 

  7. Matias M, Casa-Nova M, Faria M et al (2015) Prognostic factors after liver resection for colorectal liver metastasis. Acta Med Port 28:357–369

    Article  Google Scholar 

  8. Beppu T, Sakamoto Y, Hasegawa K et al (2012) A nomogram predicting disease-free survival in patients with colorectal liver metastases treated with hepatic resection: multicenter data collection as a Project Study for Hepatic Surgery of the Japanese Society of Hepato-Biliary-Pancreatic Surgery. J Hepatobiliary Pancreat Sci 19:72–84

    Article  Google Scholar 

  9. Angelsen JH, Viste A, Loes IM et al (2015) Predictive factors for time to recurrence, treatment and post-recurrence survival in patients with initially resected colorectal liver metastases. World J Surg Oncol 13:328

    Article  Google Scholar 

  10. Nagashima I, Takada T, Adachi M et al (2006) Proposal of criteria to select candidates with colorectal liver metastases for hepatic resection: comparison of our scoring system to the positive number of risk factors. World J Gastroenterol 12:6305–6309

    Article  Google Scholar 

  11. Wu Y, Li C, Zhao J et al (2016) Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios predict chemotherapy outcomes and prognosis in patients with colorectal cancer and synchronous liver metastasis. World J Surg Oncol 14:289

    Article  Google Scholar 

  12. Willowson KP, Hayes AR, Chan DLH et al (2017) Clinical and imaging-based prognostic factors in radioembolisation of liver metastases from colorectal cancer: a retrospective exploratory analysis. EJNMMI Res 7:46

    Article  Google Scholar 

  13. Watanabe A, Harimoto N, Araki K et al (2018) A new strategy based on fluorodeoxyglucose-positron emission tomography for managing liver metastasis from colorectal cancer. J Surg Oncol 118:1088–1095

    Article  CAS  Google Scholar 

  14. Kato H, Kuwano H, Nakajima M et al (2002) Comparison between positron emission tomography and computed tomography in the use of the assessment of esophageal carcinoma. Cancer 94:921–928

    Article  Google Scholar 

  15. Takahashi S, Kuroki Y, Nasu K et al (2006) Positron emission tomography with F-18 fluorodeoxyglucose in evaluating colorectal hepatic metastasis down-staged by chemotherapy. Anticancer Res 26:4705–4711

    PubMed  Google Scholar 

  16. Moulton CA, Gu CS, Law CH et al (2014) Effect of PET before liver resection on surgical management for colorectal adenocarcinoma metastases: a randomized clinical trial. JAMA 311:1863–1869

    Article  CAS  Google Scholar 

  17. Muralidharan V, Kwok M, Lee ST et al (2012) Prognostic ability of 18F-FDG PET/CT in the assessment of colorectal liver metastases. J Nucl Med 53:1345–1351

    Article  CAS  Google Scholar 

  18. Lee HS, Kim HO, Hong YS et al (2014) Prognostic value of metabolic parameters in patients with synchronous colorectal cancer liver metastasis following curative-intent colorectal and hepatic surgery. J Nucl Med 55:582–589

    Article  Google Scholar 

  19. Riedl CC, Akhurst T, Larson S et al (2007) 18F-FDG PET scanning correlates with tissue markers of poor prognosis and predicts mortality for patients after liver resection for colorectal metastases. J Nucl Med 48:771–775

    Article  Google Scholar 

  20. Binderup T, Knigge UP, Federspiel B et al (2013) Gene expression of glucose transporter 1 (GLUT1), hexokinase 1 and hexokinase 2 in gastroenteropancreatic neuroendocrine tumors: correlation with F-18-fluorodeoxyglucose positron emission tomography and cellular proliferation. Diagnostics (Basel) 3:372–384

    Article  Google Scholar 

  21. Sato J, Kitagawa Y, Yamazaki Y et al (2013) 18F-fluoromisonidazole PET uptake is correlated with hypoxia-inducible factor-1alpha expression in oral squamous cell carcinoma. J Nucl Med 54:1060–1065

    Article  CAS  Google Scholar 

  22. Strasberg SM (2005) Nomenclature of hepatic anatomy and resections: a review of the Brisbane 2000 system. J Hepatobiliary Pancreat Surg 12:351–355

    Article  Google Scholar 

  23. Kanda Y (2013) Investigation of the freely available easy-to-use software 'EZR' for medical statistics. Bone Marrow Transplant 48:452–458

    Article  CAS  Google Scholar 

  24. Chun YS, Vauthey JN, Boonsirikamchai P et al (2009) Association of computed tomography morphologic criteria with pathologic response and survival in patients treated with bevacizumab for colorectal liver metastases. JAMA 302:2338–2344

    Article  CAS  Google Scholar 

  25. Shindoh J, Loyer EM, Kopetz S et al (2012) Optimal morphologic response to preoperative chemotherapy: an alternate outcome end point before resection of hepatic colorectal metastases. J Clin Oncol 30:4566–4572

    Article  CAS  Google Scholar 

  26. Hosseini-Nik H, Fischer SE, Moulton CA et al (2016) Diffusion-weighted and hepatobiliary phase gadoxetic acid-enhanced quantitative MR imaging for identification of complete pathologic response in colorectal liver metastases after preoperative chemotherapy. Abdom Radiol (NY) 41:231–238

    Article  Google Scholar 

  27. Meng X, Li H, Kong L et al (2016) MRI In rectal cancer: correlations between MRI features and molecular markers Ki-67, HIF-1alpha, and VEGF. J Magn Reson Imaging 44:594–600

    Article  Google Scholar 

  28. Deng SM, Zhang W, Zhang B et al (2015) Correlation between the uptake of 18F-fluorodeoxyglucose (18F-FDG) and the expression of proliferation-associated antigen Ki-67 in cancer patients: a meta-analysis. PLoS One 10:e0129028

    Article  Google Scholar 

  29. Shannon AM, Bouchier-Hayes DJ, Condron CM et al (2003) Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev 29:297–307

    Article  CAS  Google Scholar 

  30. Bos R, van der Groep P, Greijer AE et al (2003) Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer 97:1573–1581

    Article  Google Scholar 

  31. Schindl M, Schoppmann SF, Samonigg H et al (2002) Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res 8:1831–1837

    CAS  PubMed  Google Scholar 

  32. Luo W, Hu H, Chang R et al (2011) Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145:732–744

    Article  CAS  Google Scholar 

  33. Ouyang Y, Li H, Bu J et al (2016) Hypoxia-inducible factor-1 expression predicts osteosarcoma patients' survival: a meta-analysis. Int J Biol Markers 31:e229–e234

    Article  CAS  Google Scholar 

  34. Huang C, Huang Z, Bai P et al (2018) Expression of pyruvate kinase M2 in human bladder cancer and its correlation with clinical parameters and prognosis. Onco Targets Ther 11:2075–2082

    Article  Google Scholar 

  35. Yang Y, Wu K, Liu Y et al (2017) Prognostic significance of metabolic enzyme pyruvate kinase M2 in breast cancer: a meta-analysis. Medicine (Baltimore) 96:e8690

    Article  CAS  Google Scholar 

  36. Masoud GN, Li W (2015) HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5:378–389

    Article  Google Scholar 

  37. Yang W, Zheng Y, Xia Y et al (2012) ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol 14:1295–1304

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Yukie Saito, Ms. Fumie Takada, Ms. Harumi Kanai, Ms. Tomoko Ubukata, Ms. Okada Aska, and Ms. Negishi Misato for their excellent assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norifumi Harimoto.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 62 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, A., Harimoto, N., Yokobori, T. et al. FDG-PET reflects tumor viability on SUV in colorectal cancer liver metastasis. Int J Clin Oncol 25, 322–329 (2020). https://doi.org/10.1007/s10147-019-01557-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-019-01557-0

Keywords

Navigation