Skip to main content
Log in

The impact of programmed cell death-ligand 1 (PD-L1) and CD8 expression in grade 3 endometrial carcinomas

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

To evaluate the expression of programmed cell death-ligand 1 (PD-L1) and CD8 in high-grade endometrial carcinomas and relate it to several clinicopathological parameters.

Methods

One hundred and one (101) patients with high-grade endometrial carcinomas who were completely surgically staged were included in this study. PD-L1 and CD8 + expression was evaluated by immunohistochemistry.

Results

In our cohort, 47 women (46.5%) had endometrioid carcinomas and 54 patients (53.5%) were diagnosed with non-endometrioid cancers. In endometrioid carcinomas, there was a significantly higher rate of positivity for PD-L1 expression (p = 0.042) and of intraepithelial CD8 + cell counts (p = 0.004) as opposed to non-endometrioid cancers. There were no significant relationships with any of the other clinicopathological features under study. Univariate and multivariate analysis revealed that only high intraepithelial CD8 + counts (p = 0.01) was associated with longer progression-free survival. Tumors positive for PD-L1 and high intraepithelial CD8 expression were mainly of endometrioid histology, whilst PD-L1-positive/CD8 low and PD-L1-negative/CD8 low tumors were mostly non-endometrioid carcinomas (p = 0.01). PD-L1 negative/CD8 high tumors had the longest progression-free survival (p = 0.032).

Conclusions

In grade 3 endometrial carcinomas, both of endometrioid and non-endometrioid type, high intraepithelial CD8 + counts represent an independent favorable prognostic factor and when related to PD-L1-negative tumors, a longer progression-free survival can be predicted. Immunotherapy could probably be considered for PD-L1-positive/CD8 + high tumors, which were mostly of endometrioid histology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30. https://doi.org/10.3322/caac.21442

    Article  PubMed  Google Scholar 

  2. Miller KD, Siegel RL, Lin CC et al (2016) Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 66(4):271–289. https://doi.org/10.3322/caac.21349

    Article  PubMed  Google Scholar 

  3. Bokhman JV (1983) Two pathogenetic types of endometrial carcinoma. Gynecol Oncol 15(1):10–17

    Article  CAS  PubMed  Google Scholar 

  4. Colombo N, Creutzberg C, Amant F et al (2016) ESMO-ESGO-ESTRO consensus conference on endometrial cancer: diagnosis, treatment and follow-up. Ann Oncol 27(1):16–41. https://doi.org/10.1093/annonc/mdv484

    Article  CAS  PubMed  Google Scholar 

  5. Suarez AA, Felix AS, Cohn DE (2017) Bokhman redux: endometrial cancer "types" in the 21st century. Gynecol Oncol 144(2):243–249. https://doi.org/10.1016/j.ygyno.2016.12.010

    Article  PubMed  Google Scholar 

  6. Piulats JM, Guerra E, Gil-Martin M et al (2017) Molecular approaches for classifying endometrial carcinoma. Gynecol Oncol 145(1):200–207. https://doi.org/10.1016/j.ygyno.2016.12.015

    Article  CAS  PubMed  Google Scholar 

  7. Kondratiev S, Sabo E, Yakirevich E et al (2004) Intratumoral CD8+ T lymphocytes as a prognostic factor of survival in endometrial carcinoma. Clin Cancer Res 10(13):4450–4456. https://doi.org/10.1158/1078-0432.CCR-0732-3

    Article  PubMed  Google Scholar 

  8. de Jong RA, Boerma A, Boezen HM et al (2012) Loss of HLA class I and mismatch repair protein expression in sporadic endometrioid endometrial carcinomas. Int J Cancer 131(8):1828–1836. https://doi.org/10.1002/ijc.27449

    Article  CAS  PubMed  Google Scholar 

  9. Suemori T, Susumu N, Iwata T et al (2015) Intratumoral CD8+ lymphocyte infiltration as a prognostic factor and its relationship with cyclooxygenase 2 expression and microsatellite instability in endometrial cancer. Int J Gynecol Cancer 25(7):1165–1172. https://doi.org/10.1097/IGC.0000000000000482

    Article  PubMed  Google Scholar 

  10. de Jong RA, Leffers N, Boezen HM et al (2009) Presence of tumor-infiltrating lymphocytes is an independent prognostic factor in type I and II endometrial cancer. Gynecol Oncol 114(1):105–110. https://doi.org/10.1016/j.ygyno.2009.03.022

    Article  CAS  PubMed  Google Scholar 

  11. Iurchenko NP, Glushchenko NM, Buchynska LG (2014) Comprehensive analysis of intratumoral lymphocytes and FOXP3 expression in tumor cells of endometrial cancer. Exp Oncol 36(4):262–266

    CAS  PubMed  Google Scholar 

  12. Ladanyi A, Somlai B, Gilde K et al (2004) T-cell activation marker expression on tumor-infiltrating lymphocytes as prognostic factor in cutaneous malignant melanoma. Clin Cancer Res 10(2):521–530

    Article  CAS  PubMed  Google Scholar 

  13. Gadducci A, Guerrieri ME (2017) Immune checkpoint inhibitors in gynecological cancers: update of literature and perspectives of clinical research. Anticancer Res 37(11):5955–5965. https://doi.org/10.21873/anticanres.12042

    Article  CAS  PubMed  Google Scholar 

  14. Howitt BE, Shukla SA, Sholl LM et al (2015) Association of polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. JAMA Oncol 1(9):1319–1323. https://doi.org/10.1001/jamaoncol.2015.2151

    Article  PubMed  Google Scholar 

  15. Vanderstraeten A, Luyten C, Verbist G et al (2014) Mapping the immunosuppressive environment in uterine tumors: implications for immunotherapy. Cancer Immunol Immunother 63(6):545–557. https://doi.org/10.1007/s00262-014-1537-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jones NL, Xiu J, Chatterjee-Paer S et al (2017) Distinct molecular landscapes between endometrioid and nonendometrioid uterine carcinomas. Int J Cancer 140(6):1396–1404. https://doi.org/10.1002/ijc.30537

    Article  CAS  PubMed  Google Scholar 

  17. Liu J, Liu Y, Wang W et al (2015) Expression of immune checkpoint molecules in endometrial carcinoma. Exp Ther Med 10(5):1947–1952. https://doi.org/10.3892/etm.2015.2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Asaka S, Yen TT, Wang TL et al (2019) T cell-inflamed phenotype and increased Foxp3 expression in infiltrating T-cells of mismatch-repair deficient endometrial cancers. Mod Pathol 32(4):576–584. https://doi.org/10.1038/s41379-018-0172-x

    Article  CAS  PubMed  Google Scholar 

  19. Crumley S, Kurnit K, Hudgens C et al (2019) Identification of a subset of microsatellite-stable endometrial carcinoma with high PD-L1 and CD8+ lymphocytes. Mod Pathol 32(3):396–404. https://doi.org/10.1038/s41379-018-0148-x

    Article  CAS  PubMed  Google Scholar 

  20. Li Z, Joehlin-Price AS, Rhoades J et al (2018) Programmed death ligand 1 expression among 700 consecutive endometrial cancers: strong association with mismatch repair protein deficiency. Int J Gynecol Cancer 28(1):59–68. https://doi.org/10.1097/IGC.0000000000001120

    Article  PubMed  Google Scholar 

  21. Bregar A, Deshpande A, Grange C et al (2017) Characterization of immune regulatory molecules B7-H4 and PD-L1 in low and high grade endometrial tumors. Gynecol Oncol 145(3):446–452. https://doi.org/10.1016/j.ygyno.2017.03.006

    Article  CAS  PubMed  Google Scholar 

  22. Sungu N, Yildirim M, Desdicioglu R et al (2018) Expression of immunomodulatory molecules PD-1, PD-L1, and PD-L2, and their relationship with clinicopathologic characteristics in endometrial cancer. Int J Gynecol Pathol. https://doi.org/10.1097/PGP.0000000000000543

    Article  Google Scholar 

  23. Tawadros AIF, Khalafalla MMM (2018) Expression of programmed death-ligand 1 and hypoxia-inducible factor-1alpha proteins in endometrial carcinoma. J Cancer Res Ther 14(Supplement):S1063–S1069. https://doi.org/10.4103/0973-1482.202891

    Article  CAS  PubMed  Google Scholar 

  24. Kim J, Kim S, Lee HS et al (2018) Prognostic implication of programmed cell death 1 protein and its ligand expressions in endometrial cancer. Gynecol Oncol 149(2):381–387. https://doi.org/10.1016/j.ygyno.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  25. Yamashita H, Nakayama K, Ishikawa M et al (2018) Microsatellite instability is a biomarker for immune checkpoint inhibitors in endometrial cancer. Oncotarget 9(5):5652–5664. https://doi.org/10.18632/oncotarget.23790

    Article  PubMed  Google Scholar 

  26. Thallinger C, Fureder T, Preusser M et al (2018) Review of cancer treatment with immune checkpoint inhibitors: current concepts, expectations, limitations and pitfalls. Wien Klin Wochenschr 130(3–4):85–91. https://doi.org/10.1007/s00508-017-1285-9

    Article  CAS  PubMed  Google Scholar 

  27. Mittica G, Ghisoni E, Giannone G et al (2017) Checkpoint inhibitors in endometrial cancer: preclinical rationale and clinical activity. Oncotarget 8(52):90532–90544. https://doi.org/10.18632/oncotarget.20042

    Article  PubMed  PubMed Central  Google Scholar 

  28. US Food and Drug Administration (2017) FDA approves first cancer treatment for any solid tumor with a specific genetic feature. US Food and Drug Administration, Silver Spring

    Google Scholar 

  29. De Felice F, Marchetti C, Tombolini V et al (2019) Immune check-point in endometrial cancer. Int J Clin Oncol. https://doi.org/10.1007/s10147-019-01437-7

    Article  PubMed  Google Scholar 

  30. Tumeh PC, Harview CL, Yearley JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571. https://doi.org/10.1038/nature13954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eggink FA, Van Gool IC, Leary A et al (2017) Immunological profiling of molecularly classified high-risk endometrial cancers identifies POLE-mutant and microsatellite unstable carcinomas as candidates for checkpoint inhibition. Oncoimmunology 6(2):e1264565. https://doi.org/10.1080/2162402X.2016.1264565

    Article  CAS  PubMed  Google Scholar 

  32. Ott PA, Bang YJ, Berton-Rigaud D et al (2017) Safety and antitumor activity of pembrolizumab in advanced programmed death ligand 1-positive endometrial cancer: results from the KEYNOTE-028 study. J Clin Oncol 35(22):2535–2541. https://doi.org/10.1200/JCO.2017.72.5952

    Article  CAS  PubMed  Google Scholar 

  33. Kraft S, Fernandez-Figueras MT, Richarz NA et al (2017) PDL1 expression in desmoplastic melanoma is associated with tumor aggressiveness and progression. J Am Acad Dermatol 77(3):534–542. https://doi.org/10.1016/j.jaad.2017.05.007

    Article  CAS  PubMed  Google Scholar 

  34. Teng MW, Ngiow SF, Ribas A et al (2015) Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res 75(11):2139–2145. https://doi.org/10.1158/0008-5472.CAN-15-0255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Husseinzadeh N, Husseinzadeh HD (2014) mTOR inhibitors and their clinical application in cervical, endometrial and ovarian cancers: a critical review. Gynecol Oncol 133(2):375–381. https://doi.org/10.1016/j.ygyno.2014.02.017

    Article  CAS  PubMed  Google Scholar 

  36. Vanneman M, Dranoff G (2012) Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12(4):237–251. https://doi.org/10.1038/nrc3237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Santin AD, Bellone S, Buza N et al (2016) Regression of chemotherapy-resistant polymerase epsilon (POLE) ultra-mutated and MSH6 hyper-mutated endometrial tumors with nivolumab. Clin Cancer Res 22(23):5682–5687. https://doi.org/10.1158/1078-0432.CCR-16-1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mehnert JM, Panda A, Zhong H et al (2016) Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer. J Clin Investig 126(6):2334–2340. https://doi.org/10.1172/JCI84940

    Article  PubMed  PubMed Central  Google Scholar 

  39. Garon EB, Rizvi NA, Hui R et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372(21):2018–2028. https://doi.org/10.1056/NEJMoa1501824

    Article  PubMed  Google Scholar 

  40. Sabatier R, Finetti P, Mamessier E et al (2015) Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget 6(7):5449–5464. https://doi.org/10.18632/oncotarget.3216

    Article  PubMed  Google Scholar 

  41. Tamura T, Ohira M, Tanaka H et al (2015) Programmed death-1 ligand-1 (PDL1) expression is associated with the prognosis of patients with stage II/III gastric cancer. Anticancer Res 35(10):5369–5376

    CAS  PubMed  Google Scholar 

  42. Mo Z, Liu J, Zhang Q et al (2016) Expression of PD-1, PD-L1 and PD-L2 is associated with differentiation status and histological type of endometrial cancer. Oncol Lett 12(2):944–950. https://doi.org/10.3892/ol.2016.4744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bellone S, Bignotti E, Lonardi S et al (2017) Polymerase epsilon (POLE) ultra-mutation in uterine tumors correlates with T lymphocyte infiltration and increased resistance to platinum-based chemotherapy in vitro. Gynecol Oncol 144(1):146–152. https://doi.org/10.1016/j.ygyno.2016.11.023

    Article  CAS  PubMed  Google Scholar 

  44. Fridman WH, Pages F, Sautes-Fridman C et al (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306. https://doi.org/10.1038/nrc3245

    Article  CAS  PubMed  Google Scholar 

  45. Cermakova P, Melichar B, Tomsova M et al (2014) Prognostic significance of CD3+ tumor-infiltrating lymphocytes in patients with endometrial carcinoma. Anticancer Res 34(10):5555–5561

    CAS  PubMed  Google Scholar 

  46. Hendry S, Salgado R, Gevaert T et al (2017) Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the international immuno-oncology biomarkers working group: part 1: assessing the host immune response, TILs in invasive breast carcinoma and ductal carcinoma in situ, metastatic tumor deposits and areas for further research. Adv Anat Pathol 24(5):235–251. https://doi.org/10.1097/PAP.0000000000000162

    Article  PubMed  PubMed Central  Google Scholar 

  47. Thompson ED, Zahurak M, Murphy A et al (2017) Patterns of PD-L1 expression and CD8 T cell infiltration in gastric adenocarcinomas and associated immune stroma. Gut 66(5):794–801. https://doi.org/10.1136/gutjnl-2015-310839

    Article  CAS  PubMed  Google Scholar 

  48. Al-Shibli KI, Donnem T, Al-Saad S et al (2008) Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res 14(16):5220–5227. https://doi.org/10.1158/1078-0432.CCR-08-0133

    Article  CAS  PubMed  Google Scholar 

  49. Hendry S, Salgado R, Gevaert T et al (2017) Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the international immuno-oncology biomarkers working group: part 2: TILs in melanoma, gastrointestinal tract carcinomas, non-small cell lung carcinoma and mesothelioma, endometrial and ovarian carcinomas, squamous cell carcinoma of the head and neck, genitourinary carcinomas, and primary brain tumors. Adv Anat Pathol 24(6):311–335. https://doi.org/10.1097/PAP.0000000000000161

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jung IK, Kim SS, Suh DS et al (2014) Tumor-infiltration of T-lymphocytes is inversely correlated with clinicopathologic factors in endometrial adenocarcinoma. Obstet Gynecol Sci 57(4):266–273. https://doi.org/10.5468/ogs.2014.57.4.266

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wang Q, Lou W, Di W et al (2017) Prognostic value of tumor PD-L1 expression combined with CD8(+) tumor infiltrating lymphocytes in high grade serous ovarian cancer. Int Immunopharmacol 52:7–14. https://doi.org/10.1016/j.intimp.2017.08.017

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research work was supported by the Onassis Foundation—Scholarship ID: G ZO 001-1/2018-2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stylianos Vagios.

Ethics declarations

Conflict of interest

Onassis Foundation did not influence on the decision to submit this manuscript or on its content. We declare that we have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vagios, S., Yiannou, P., Giannikaki, E. et al. The impact of programmed cell death-ligand 1 (PD-L1) and CD8 expression in grade 3 endometrial carcinomas. Int J Clin Oncol 24, 1419–1428 (2019). https://doi.org/10.1007/s10147-019-01484-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-019-01484-0

Keywords

Navigation