Abstract
Background
The Japan Study Group for Cell Therapy and Transplantation (JSCT) organized a phase II study to evaluate the efficacy and safety of a treatment protocol (JSCT-MM12) for multiple myeloma (MM) patients who were previously untreated and transplantation-eligible. Since bortezomib-based therapy is known to be effective for MM, the protocol is intensified more than the previous protocol (JSCT-MM10) and comprised the subsequent treatments: bortezomib + cyclophosphamide + dexamethasone (VCD) induction; bortezomib + high-dose-melphalan (B-HDM) conditioning with autologous stem cell transplantation (ASCT); bortezomib + thalidomide + dexamethasone (VTD) consolidation; and lenalidomide (LEN) maintenance.
Methods
Sixty-four symptomatic patients aged between 20 and 65 years were enrolled for treatment and received three cycles of VCD, followed by cyclophosphamide administration for autologous stem cell harvest and B-HDM/ASCT, and subsequently two cycles of VTD, after that LEN for 1 year.
Results
Complete response (CR)/stringent CR (sCR) rates for induction, ASCT, consolidation, and maintenance therapies were 20, 39, 52, and 56%, respectively. The grade 3/4 toxicities (≥ 10%) with VCD treatment included neutropenia (27%), anemia (19%), and thrombocytopenia (11%). There was no treatment-related mortality. After median follow-up of 41 months, estimated 3-year progression-free survival (PFS) and overall survival (OS) rates were 64% and 88%, respectively. The high-risk group revealed lower CR/sCR, PFS, and OS than the standard-risk group.
Conclusions
The study revealed that the treatment protocol consisting of VCD induction, B-HDM/ASCT followed by VTD consolidation, and LEN maintenance could produce highly beneficial responses and favorable tolerability in newly diagnosed MM. However, future study is required for improving treatment in the high-risk group.
Similar content being viewed by others
References
Harousseau JL, Attal M, Avet-Loiseau H et al (2010) Bortezomib plus dexamethasone is superior to vincristine plus doxorubicin plus dexamethasone as induction treatment prior to autologous stem-cell transplantation in newly diagnosed multiple myeloma: results of the IFM 2005-01 phase III trial. J Clin Oncol 28:4621–4629
Cavo M, Tacchetti P, Patriarca F et al (2010) Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma: a randomized phase 3 study. Lancet 376:2075–2085
Rosiñol L, Oriol A, Teruel AI et al (2012) Superiority of bortezomib, thalidomide, and dexamethasone (VTD) as induction pretransplantation therapy in multiple myeloma: a randomized phase 3 PETHEMA/GEM study. Blood 120:1589–1596
Reeder CB, Reece DE, Kukreti V et al (2009) Cyclophosphamide, bortezomib and dexamethasone induction for newly diagnosed multiple myeloma: high response rates in a phase II clinical trial. Leukemia 23:1337–1341
Richardson PG, Weller E, Lonial S et al (2010) Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood 116:679–686
Palumbo A, Cavallo F, Gay F et al (2014) Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med 371:895–905
Barlogie B, Tricot G, Rasmussen E et al (2006) Total therapy 2 without thalidomide in comparison with total therapy 1: role of intensified induction and posttransplantation consolidation therapies. Blood 107:2633–2638
Attal M, Harousseau JL, Leyvraz S et al (2006) Maintenance therapy with thalidomide improves survival in patients with multiple myeloma. Blood 108:3289–3294
Spencer A, Prince HM, Roberts AW et al (2009) Consolidation therapy with low-dose thalidomide and prednisolone prolongs the survival of multiple myeloma patients undergoing a single autologous stem-cell transplantation procedure. J Clin Oncol 27:1788–1793
Lokhorst HM, van der Holt B, Zweegman S et al (2010) A randomized phase 3 study on the effect of thalidomide combined with adriamycin, dexamethasone, and high-dose melphalan, followed by thalidomide maintenance in patients with multiple myeloma. Blood 115:1113–1120
Morgan GJ, Gregory WM, Davies FE et al (2012) The role of maintenance thalidomide therapy in multiple myeloma: MRC Myeloma IX results and meta-analysis. Blood 119:7–15
Stewart AK, Trudel S, Bahlis NJ et al (2013) A randomized phase 3 trial of thalidomide and prednisone as maintenance therapy after ASCT in patients with MM with a quality-of-life assessment: the National Cancer Institute of Canada Clinical Trials Group Myeloma 10 Trial. Blood 121:1517–1523
Attal M, Lauwers-Cances V, Marit G et al (2012) Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N Engl J Med 366:1782–1791
McCarthy PL, Owzar K, Hofmeister CC et al (2012) Lenalidomide after stem-cell transplantation for multiple myeloma. N Engl J Med 366:1770–1781
Fuchida S, Sunami K, Matsumoto M et al (2018) A phase II study of lenalidomide consolidation and maintenance therapy after autologous PBSCT in patients with multiple myeloma. Int J Hematol 109:107–114
Moreau P, Facon T, Attal M et al (2002) Comparison of 200 mg/m2 melphalan and 8 Gy total body irradiation plus 140 mg/m2 melphalan as conditioning regimens for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma: final analysis of the Intergroupe Francophone du Myelome 9502 randomized trial. Blood 99:731–735
Lahuerta JJ, Martinez-Lopez J, Grande C et al (2000) Conditioning regimens in autologous stem cell transplantation for multiple myeloma: a comparative study of efficacy and toxicity from the Spanish Registry for Transplantation in Multiple Myeloma. Br J Haematol 109:138–147
Einsele H, Bamberg M, Budach W et al (2003) A new conditioning regimen involving total marrow irradiation, busulfan and cyclophosphamide followed by autologous PBSCT in patients with advanced multiple myeloma. Bone Marrow Transplant 32:593–599
Anagnostopoulos A, Aleman A, Ayers G et al (2004) Comparison of high-dose melphalan with a more intensive regimen of thiotepa, busulfan, and cyclophosphamide for patients with multiple myeloma. Cancer 100:2607–2612
Mitsiades N, Mitsiades CS, Richardson PG et al (2003) The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 101:2377–2380
Ma MH, Yang HH, Parker K et al (2003) The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents. Clin Cancer Res 9:1136–1144
Berenson JR, Yang HH, Sadler K et al (2006) Phase I/II trial assessing bortezomib and melphalan combination therapy for the treatment of patients with relapsed or refractory multiple myeloma. J Clin Oncol 24:937–944
San Miguel JF, Schlag R, Khuageva NK et al (2008) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359:906–917
Roussel M, Moreau P, Huynh A et al (2010) Bortezomib and high-dose melphalan as conditioning regimen before autologous stem cell transplantation in patients with de novo multiple myeloma: a phase 2 study of the Intergroupe Francophone du Myélome (IFM). Blood 115:32–37
Richardson PG, Briemberg H, Jagannath S et al (2006) Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol 24:3113–3120
Sunami K, Shinagawa K, Sawamura M et al (2009) Phase I/II study of tandem high-dose chemotherapy with autologous peripheral blood stem cell transplantation for advanced multiple myeloma. Int J Hematol 90:635–642
Durie BG, Harousseau JL, Miguel JS et al (2006) International uniform response criteria for multiple myeloma. Leukemia 20:1467–1473
Lahuerta JJ, Mateos MV, Martínez-López J et al (2008) Influence of pre- and post-transplantation responses on outcome of patients with multiple myeloma: sequential improvement of response and achievement of complete response are associated with longer survival. J Clin Oncol 26:5775–5782
Reeder CB, Reece DE, Kukreti V et al (2010) Once- versus twice-weekly bortezomib induction therapy with CyBorD in newly diagnosed multiple myeloma. Blood 115:3416–3417
Moreau P, Attal M, Pégourié B et al (2011) Achievement of VGPR to induction therapy is an important prognostic factor for longer PFS in the IFM 2005-01 trial. Blood 117:3041–3044
Moreau P, Pylypenko H, Grosicki S et al (2011) Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol 12:431–440
Jantunen E, Putkonen M, Nousiainen T et al (2003) Low-dose or intermediate-dose cyclophosphamide plus granulocyte colony-stimulating factor for progenitor cell mobilisation in patients with multiple myeloma. Bone Marrow Transplant 31:347–351
de la Rubia J, Bladé J, Lahuerta JJ et al (2006) Effect of chemotherapy with alkylating agents on the yield of CD34 + cells in patients with multiple myeloma. Results of the Spanish Myeloma Group (GEM) Study. Haematologica 91:621–627
Bellido M, Sureda A, Martino R et al (1998) Collection of peripheral blood progenitor cells for autografting with low-dose cyclophosphamide plus granulocyte colony-stimulating factor. Haematologica 83:428–431
Niesvizky R, Mark TM, Ward M et al (2013) Overcoming the response plateau in multiple myeloma: a novel bortezomib-based strategy for secondary induction and high-yield CD34 + stem cell mobilization. Clin Cancer Res 19:1534–1546
Leleu X, Fouquet G, Hebraud B et al (2013) Consolidation with VTd significantly improves the complete remission rate and time to progression following VTd induction and single autologous stem cell transplantation in multiple myeloma. Leukemia 27:2242–2244
McCarthy PL, Holstein SA, Petrucci MT et al (2017) Lenalidomide maintenance after autologous stem cell transplantation in newly diagnosed multiple myeloma: a meta-analysis. J Clin Oncol 35:3279–3289
Fonseca R, Blood E, Rue M et al (2003) Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 101:4569–4575
Avet-Loiseau H, Attal M, Moreau P et al (2007) Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myélome. Blood 109:3489–3495
Avet-Loiseau H, Leleu X, Roussel M et al (2010) Bortezomib plus dexamethasone induction improves outcome of patients with t (4;14) myeloma but not outcome of patients with del(17p). J Clin Oncol 28:4621–4635
Cavo M, Pantani L, Petrucci MT et al (2012) Bortezomib-thalidomide-dexamethasone is superior to thalidomide-dexamethasone as consolidation therapy after autologous hematopoietic stem cell transplantation in patients with newly diagnosed multiple myeloma. Blood 120:9–19
Neben K, Lokhorst HM, Jauch A et al (2012) Administration of bortezomib before and after autologous stem cell transplantation improves outcome in multiple myeloma patients with deletion 17p. Blood 119:940–948
Hebraud B, Leleu X, Lauwers-Cances V et al (2014) Deletion of the 1p32 region is a major independent prognostic factor in young patients with myeloma: the IFM experience on 1195 patients. Leukemia 28:675–679
Nooka AK, Kaufman JL, Muppidi S et al (2014) Consolidation and maintenance therapy with lenalidomide, bortezomib and dexamethasone (RVD) in high-risk myeloma patients. Leukemia 28:690–693
Roussel M, Lauwers-Cances V, Robillard N et al (2014) Front-line transplantation program with lenalidomide, bortezomib, and dexamethasone combination as induction and consolidation followed by lenalidomide maintenance in patients with multiple myeloma: a phase II study by the Intergroupe Francophone du Myélome. J Clin Oncol 32:2712–2717
Chng WJ, Goldschmidt H, Dimopoulos MA et al (2017) Carfilzomib–dexamethasone vs bortezomib–dexamethasone in relapsed or refractory multiple myeloma by cytogenetic risk in the phase 3 study ENDEAVOR. Leukemia 31:1368–1374
Avet-Loiseau H, Bahlis NJ, Chng WJ et al (2017) Ixazomib significantly prolongs progression-free survival in high-risk relapsed/refractory myeloma patients. Blood 130:2610–2618
Dimopoulos MA, Lonial S, White D et al (2017) Elotuzumab plus lenalidomide/dexamethasone for relapsed or refractory multiple myeloma: ELOQUENT-2 follow-up and post hoc analyses on progression-free survival and tumour growth. Br J Haematol 178:896–905
Acknowledgements
We are grateful to Professor Koji Yonemoto (Ryukyu University) for the data analysis. This work was supported by a grant from the Regional Medicine Research Foundation (Tochigi, Japan).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Kazutaka Sunami received research funding from Ono Pharmaceutical, MSD, Celgene, Abbvie, Takeda pharmaceutical, Sanofi, Bristol-Myers Squibb, Daiichi Sankyo, Janssen, Novartis, Alexion Pharma and GlaxoSmithKline, and received honoraria from Ono Pharmaceutical, Celgene, Takeda Pharmaceutical, and Bristol-Myers Squibb. Morio Matsumoto received honoraria from Janssen, Celgene and Ono Pharmaceutical. Shin-ichi Fuchida received honoraria from Takeda Pharmaceutical. Hiroyuki Takamatsu received honoraria from Janssen and Celgene. Toru Kiguchi received research funding from Daiichi Sankyo, Bristol-Myers Squibb, Otsuka Pharmaceutical, Kyowa Hakko Kirin, MSD, Astellas, Nippon Shinyaku, Novartis, Sumitomo Dainippon, Janssen, Celgene, Symbio Pharmaceutical, Taiho Pharmaceutical, Teijin, Sanofi and Celltrion. Toshihiro Miyamoto received honoraria from Celgene and MSD. Junji Suzumiya received honoraria from Eisai, Celgene, Janssen, Chugai Pharmaceutical, Abbvie and Takeda Pharmaceutical, and research funding from Chugai Pharmaceutical, Eisai, Takeda Pharmaceutical, Kyowa Hakko Kirin, Astellas, Toyama Chemical, Celgene, Celltrion and Symbio Pharmaceutical. Yasushi Takamatsu received honoraria from Ono Pharmaceutical, Kyowa Hakko Kirin and Janssen, and received from research funding from Takeda Pharmaceutical, Ono Pharmaceutical and Celgene. Koichi Akashi received honoraria from Takeda Pharmaceutical, Bristol-Myers Squibb, Novartis, Kyowa Hakko Kirin, Janssen, Pfizer, Chugai Pharmaceutical, Ono Pharmaceutical, Eisai, Astellas and Celgene, and received research funding from Taiho Pharmaceutical, Sanofi, Novartis, MSD, Astellas, Bristol-Myers Squibb, Eli Lilly, Kyowa Hakko Kirin, Chugai Pharmaceutical, Asahi Kasei, Eisai, Otsuka Pharmaceutical, Ono Pharmaceutical, Teijin, Nippon Shinyaku, Shionogi, Mitsubishi Tanabe, Sumitomo Dainippon, Toyama Chemical, Daiichi Sankyo, Takeda Pharmaceutical, Yakult, Taisho Toyama Pharmaceutical, The Chemo-Sero-Therapeutic Research Institute, Alexion Pharma and Merck Serono. The other authors have no conflict of interests to declare.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
About this article
Cite this article
Sunami, K., Matsumoto, M., Fuchida, Si. et al. Bortezomib-based strategy with autologous stem cell transplantation for newly diagnosed multiple myeloma: a phase II study by the Japan Study Group for Cell Therapy and Transplantation (JSCT-MM12). Int J Clin Oncol 24, 966–975 (2019). https://doi.org/10.1007/s10147-019-01436-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10147-019-01436-8