Skip to main content

Advertisement

Log in

Coadministration of cytotoxic chemotherapeutic agents with irinotecan is a risk factor for irinotecan-induced cholinergic syndrome in Japanese patients with cancer

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Cholinergic syndrome is an acute adverse event frequently observed in patients administered irinotecan, and can sometimes negatively affect their quality of life. In some manifestations of the syndrome such as bradycardia, careful monitoring of patients is advised. In this study, we retrospectively investigated the risk factors associated with irinotecan-induced cholinergic syndrome in Japanese patients with cancer.

Methods

Patients who received irinotecan-based chemotherapy between April 2014 and June 2018 were examined. Patient backgrounds and clinical data during the first cycle of an irinotecan-containing regimen, including cholinergic syndrome manifestation within 24 h after the start of treatment, were collected from medical records. Univariate and multivariate analyses were performed to assess the risk of irinotecan-induced cholinergic syndrome.

Results

Among 179 patients administered an irinotecan-containing regimen, 51 experienced cholinergic syndrome after the initiation of treatment. The most common symptom was sweating followed by diarrhea, abdominal pain, lacrimation, and nasal discharge. 42 patients developed symptoms of cholinergic syndrome during their first treatment with irinotecan. Multivariate analyses revealed that the incidences of cholinergic syndrome in patients administered 2 or 3 chemotherapeutic agents; i.e., irinotecan plus 1 or 2 other cytotoxic anticancer drug(s), were significantly higher than that in patients administered irinotecan alone [odds ratio (OR) 4.35, 95% confidence interval (CI) 1.5–12, p = 0.0053 and OR 4.50, 95% CI 1.5–14, p = 0.0093, respectively]. The addition of a molecularly targeted drug did not affect the incidence of cholinergic syndrome.

Conclusion

The incidence rate of irinotecan-induced cholinergic syndrome increased concomitantly with the addition of cytotoxic chemotherapeutic agents administered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujita K, Kubota Y, Ishida H et al (2015) Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J Gastroenterol 21(43):12234–12248. https://doi.org/10.3748/wjg.v21.i43.12234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mathijssen RH, van Alphen RJ, Verweij J et al (2001) Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 7(8):2182–2194

    CAS  PubMed  Google Scholar 

  3. Ando Y, Saka H, Ando M et al (2000) Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res 60(24):6921–6926

    CAS  PubMed  Google Scholar 

  4. Innocenti F, Undevia SD, Iyer L et al (2004) Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 22(8):1382–1388. https://doi.org/10.1200/JCO.2004.07.173

    Article  CAS  PubMed  Google Scholar 

  5. Araki K, Fujita K, Ando Y et al (2006) Pharmacogenetic impact of polymorphisms in the coding region of the UGT1A1 gene on SN-38 glucuronidation in Japanese patients with cancer. Cancer Sci 97(11):1255–1259. https://doi.org/10.1111/j.1349-7006.2006.00321.x

    Article  CAS  PubMed  Google Scholar 

  6. Minami H, Sai K, Saeki M et al (2007) Irinotecan pharmacokinetics/pharmacodynamics and UGT1A genetic polymorphisms in Japanese: roles of UGT1A1*6 and *28. Pharmacogenet Genom 17(7):497–504. https://doi.org/10.1097/FPC.0b013e328014341f

    Article  CAS  Google Scholar 

  7. Gandia D, Abigerges D, Armand JP et al (1993) CPT-11-induced cholinergic effects in cancer patients. J Clin Oncol 11(1):196–197. https://doi.org/10.1200/JCO.1993.11.1.196

    Article  CAS  PubMed  Google Scholar 

  8. Miya T, Fujikawa R, Fukushima J et al (1998) Bradycardia induced by irinotecan: a case report. Jpn J Clin Oncol 28(11):709–711

    Article  CAS  PubMed  Google Scholar 

  9. Fujii H, Hirata T, Mura T et al (2018) Relation between irinotecan-induced cholinergic syndrome and prognosis of colorectal cancer patients. J Clin Oncol 36(4_suppl):859. https://doi.org/10.1200/JCO.2018.36.4_suppl.859

    Article  Google Scholar 

  10. Kanbayashi Y, Ishikawa T, Kanazawa M et al (2018) Predictive factors for the development of irinotecan-related cholinergic syndrome using ordered logistic regression analysis. Med Oncol 35(6):82. https://doi.org/10.1007/s12032-018-1142-3

    Article  CAS  PubMed  Google Scholar 

  11. Pitot HC, Goldberg RM, Reid JM et al (2000) Phase I dose-finding and pharmacokinetic trial of irinotecan hydrochloride (CPT-11) using a once-every-three-week dosing schedule for patients with advanced solid tumor malignancy. Clin Cancer Res 6(6):2236–2244

    CAS  PubMed  Google Scholar 

  12. Blandizzi C, De Paolis B, Colucci R et al (2001) Acetylcholinesterase blockade does not account for the adverse cardiovascular effects of the antitumor drug irinotecan: a preclinical study. Toxicol Appl Pharmacol 177(2):149–156. https://doi.org/10.1006/taap.2001.9293

    Article  CAS  PubMed  Google Scholar 

  13. Tsavaris N, Ziras N, Kosmas C et al (2003) Two different schedules of irinotecan (CPT-11) in patients with advanced colorectal carcinoma relapsing after a 5-fluorouracil and leucovorin combination. A randomized study. Cancer Chemother Pharmacol 52(6):514–519. https://doi.org/10.1007/s00280-003-0659-z

    Article  CAS  PubMed  Google Scholar 

  14. Schoemaker NE, Kuppens IE, Moiseyenko V et al (2004) A randomised phase II multicentre trial of irinotecan (CPT-11) using four different schedules in patients with metastatic colorectal cancer. Br J Cancer 91(8):1434–1441. https://doi.org/10.1038/sj.bjc.6602172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tournigand C, André T, Achille E et al (2004) FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol 22(2):229–237. https://doi.org/10.1200/JCO.2004.05.113

    Article  CAS  PubMed  Google Scholar 

  16. Noda K, Nishiwaki Y, Kawahara M et al (2002) Irinotecan plus cisplatin compared with etoposide plus cisplatin for extensive small-cell lung cancer. N Engl J Med 346(2):85–91. https://doi.org/10.1056/NEJMoa003034

    Article  CAS  PubMed  Google Scholar 

  17. Yoshida K, Iwashita T, Uemura S et al (2017) A multicenter prospective phase II study of first-line modified FOLFIRINOX for unresectable advanced pancreatic cancer. Oncotarget 8(67):111346–111355. https://doi.org/10.18632/oncotarget.22795

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sunakawa Y, Fujita K, Ichikawa W et al (2012) A phase I study of infusional 5-fluorouracil, leucovorin, oxaliplatin and irinotecan in Japanese patients with advanced colorectal cancer who harbor UGT1A1*1/*1,*1/*6 or *1/*28. Oncology 82(4):242–248. https://doi.org/10.1159/000337225

    Article  CAS  PubMed  Google Scholar 

  19. Cunningham D, Humblet Y, Siena S et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351(4):337–345. https://doi.org/10.1056/NEJMoa033025

    Article  CAS  PubMed  Google Scholar 

  20. Peeters M, Price TJ, Cervantes A et al (2010) Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol 28(31):4706–4713. https://doi.org/10.1200/JCO.2009.27.6055

    Article  CAS  PubMed  Google Scholar 

  21. Yamazaki K, Nagase M, Tamagawa H et al (2016) Randomized phase III study of bevacizumab plus FOLFIRI and bevacizumab plus mFOLFOX6 as first-line treatment for patients with metastatic colorectal cancer (WJOG4407G). Ann Oncol 27(8):1539–1546. https://doi.org/10.1093/annonc/mdw206

    Article  CAS  PubMed  Google Scholar 

  22. Van Cutsem E, Tabernero J, Lakomy R et al (2012) Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 30(28):3499–3506. https://doi.org/10.1200/JCO.2012.42.8201

    Article  CAS  PubMed  Google Scholar 

  23. Tabernero J, Yoshino T, Cohn AL et al (2015) Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. Lancet Oncol 16(5):499–508. https://doi.org/10.1016/S1470-2045(15)70127-0

    Article  CAS  PubMed  Google Scholar 

  24. Matsumoto K, Katsumata N, Yamanaka Y et al (2006) The safety and efficacy of the weekly dosing of irinotecan for platinum- and taxanes-resistant epithelial ovarian cancer. Gynecol Oncol 100(2):412–416. https://doi.org/10.1016/j.ygyno.2005.10.013

    Article  CAS  Google Scholar 

  25. Hironaka S, Ueda S, Yasui H et al (2013) Randomized, open-label, phase III study comparing irinotecan with paclitaxel in patients with advanced gastric cancer without severe peritoneal metastasis after failure of prior combination chemotherapy using fluoropyrimidine plus platinum: WJOG 4007 trial. J Clin Oncol 31(35):4438–4444. https://doi.org/10.1200/JCO.2012.48.5805

    Article  CAS  PubMed  Google Scholar 

  26. Shimada Y, Yoshino M, Wakui A et al (1993) Phase II study of CPT-11, a new camptothecin derivative, in metastatic colorectal cancer. CPT-11 Gastrointestinal Cancer Study Group. J Clin Oncol 11(5):909–913. https://doi.org/10.1200/JCO.1993.11.5.909

    Article  CAS  PubMed  Google Scholar 

  27. Muro K, Boku N, Shimada Y et al (2010) Irinotecan plus S-1 (IRIS) versus fluorouracil and folinic acid plus irinotecan (FOLFIRI) as second-line chemotherapy for metastatic colorectal cancer: a randomised phase 2/3 non-inferiority study (FIRIS study). Lancet Oncol 11(9):853–860. https://doi.org/10.1016/S1470-2045(10)70181-9

    Article  CAS  PubMed  Google Scholar 

  28. Valencak J, Raderer M, Kornek GV et al (1998) Irinotecan-related cholinergic syndrome induced by coadministration of oxaliplatin. J Natl Cancer Inst 90(2):160

    Article  CAS  PubMed  Google Scholar 

  29. Cheng C, Lau JE, Earl MA (2015) Use of atropine-diphenoxylate compared with hyoscyamine to decrease rates of irinotecan-related cholinergic syndrome. J Commun Support Oncol 13(1):3–7. https://doi.org/10.12788/jcso.0099

    Article  CAS  Google Scholar 

  30. Marsh ReW, Talamonti MS, Katz MH et al (2015) Pancreatic cancer and FOLFIRINOX: a new era and new questions. Cancer Med 4(6):853–863. https://doi.org/10.1002/cam4.433

    Article  PubMed Central  Google Scholar 

  31. Lambert A, Gavoille C, Conroy T (2017) Current status on the place of FOLFIRINOX in metastatic pancreatic cancer and future directions. Therap Adv Gastroenterol 10(8):631–645. https://doi.org/10.1177/1756283X17713879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fujita K, Sasaki Y (2014) Optimization of cancer chemotherapy on the basis of pharmacokinetics and pharmacodynamics: from patients enrolled in clinical trials to those in the ‘real world’. Drug Metab Pharmacokinet 29(1):20–28

    Article  CAS  PubMed  Google Scholar 

  33. Blandizzi C, Danesi R, De Paolis B et al (2002) Cholinergic toxic syndrome by the anticancer drug irinotecan: acetylcholinesterase does not play a major role. Clin Pharmacol Ther 71(4):263–271. https://doi.org/10.1067/mcp.2002.121909

    Article  CAS  PubMed  Google Scholar 

  34. Akiyama Y, Fujita K, Nagashima F et al (2008) Genetic testing for UGT1A1*28 and *6 in Japanese patients who receive irinotecan chemotherapy. Ann Oncol 19(12):2089–2090. https://doi.org/10.1093/annonc/mdn645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beutler E, Gelbart T, Demina A (1998) Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc Natl Acad Sci USA 95(14):8170–8174

    Article  CAS  PubMed  Google Scholar 

  36. de Jong FA, van der Bol JM, Mathijssen RH et al (2008) Renal function as a predictor of irinotecan-induced neutropenia. Clin Pharmacol Ther 84(2):254–262. https://doi.org/10.1038/sj.clpt.6100513

    Article  CAS  PubMed  Google Scholar 

  37. van der Bol JM, Mathijssen RH, Loos WJ et al (2007) Cigarette smoking and irinotecan treatment: pharmacokinetic interaction and effects on neutropenia. J Clin Oncol 25(19):2719–2726. https://doi.org/10.1200/JCO.2006.09.6115

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the staff members of Showa University Hospital who cooperated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Fujita.

Ethics declarations

Conflict of interest

All authors have no conflict of interest to declare in association with this study.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuboya, A., Fujita, Ki., Kubota, Y. et al. Coadministration of cytotoxic chemotherapeutic agents with irinotecan is a risk factor for irinotecan-induced cholinergic syndrome in Japanese patients with cancer. Int J Clin Oncol 24, 222–230 (2019). https://doi.org/10.1007/s10147-018-1347-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-018-1347-7

Keywords

Navigation