Skip to main content

Advertisement

Log in

Recent advances in therapeutic strategies for unresectable or metastatic melanoma and real-world data in Japan

  • Invited Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

New therapeutic strategies including immunotherapy and selective molecular target inhibitors have brought about a new era in the treatment of patients with advanced melanoma. In Japan, the immune checkpoint inhibitors ipilimumab, nivolumab and pembrolizumab, the BRAF inhibitor (BRAFi) vemurafenib, dabrafenib and MEK inhibitor (MEKi) trametinib have been available for the treatment of unresectable and metastatic melanoma. The BRAFi + MEKi combination shows high response rates (60–70%) and rapid response induction associated with symptom control, with a progression-free survival of 12 months. Nivolumab and pembrolizumab offer moderate response rates (30–40%) and long survival (3- to 5-year survival: 30–50%). In Japan, treatment options for the first-line setting frequently include nivolumab or pembrolizumab monotherapy and BRAFi + MEKi combinations (for patients with BRAF-mutant melanoma). Ipilimumab is included in the second-line setting, and the nivolumab + ipilimumab combination has not been approved yet in Japan. Although these medications have demonstrated impressive efficacy, the clinical trials and real-world data have shown that the clinical benefit is not fully satisfactory. We have to carefully manage a new class of adverse events due to these medicines. Moreover, biomarkers are emerging with which we can identify a population that would experience more benefits without severe adverse events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mangana J, Cheng PF, Kaufmann C et al (2017) Multicenter, real-life experience with checkpoint inhibitors and targeted therapy agents in advanced melanoma patients in Switzerland. Melanoma Res 27(4):358–368

    CAS  PubMed  PubMed Central  Google Scholar 

  2. CANCER STATISTICS IN JAPAN '16. Cancer information service NCC, Japan. https://ganjoho.jp/en/professional/statistics/brochure/2016_en.html

  3. Nishi M (2016) Epidemiology of skin cancer in Japan. J Tumor 4(2):369–373

    CAS  Google Scholar 

  4. Fujisawa Y, Fujimoto M (2014) Statistics for malignant melanoma in Japan: a nation wide survey from 2005 to 2013. Skin Cancer 29(2):189–194

    Google Scholar 

  5. Curtin JA, Fridlyand J, Kageshita T et al (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353(20):2135–2147

    CAS  PubMed  Google Scholar 

  6. Menzies AM, Haydu LE, Visintin L et al (2012) Distinguishing clinicopathologic features of patients with V600E and V600K BRAF-mutant metastatic melanoma. Clin Cancer Res 18(12):3242–3249

    CAS  PubMed  Google Scholar 

  7. Jiveskog S, Ragnarsson-Olding B, Platz A et al (1998) N-ras mutations are common in melanomas from sun-exposed skin of humans but rare in mucosal membranes or unexposed skin. J Investig Dermatol 111(5):757–761

    CAS  PubMed  Google Scholar 

  8. Curtin JA, Busam K, Pinkel D et al (2006) Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24(26):4340–4346

    CAS  PubMed  Google Scholar 

  9. Cancer Genome Atlas Network (2015) Genomic classification of cutaneous melanoma. Cell 161(7):1681–1696

    Google Scholar 

  10. Sakaizawa K, Ashida A, Uchiyama A et al (2015) Clinical characteristics associated with BRAF, NRAS and KIT mutations in Japanese melanoma patients. J Dermatol Sci 80(1):33–37

    CAS  PubMed  Google Scholar 

  11. Uhara H, Ashida A, Koga H et al (2014) NRAS mutations in primary and metastatic melanomas of Japanese patients. Int J Clin Oncol 19(3):544–548

    CAS  PubMed  Google Scholar 

  12. Flaherty KT, Infante JR, Daud A et al (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367(18):1694–1703

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Long GV, Stroyakovskiy D, Gogas H et al (2015) Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet 386(9992):444–451

    CAS  PubMed  Google Scholar 

  14. Long GV, Eroglu Z, Infante J et al (2017) Long-Term outcomes in patients with BRAF V600-mutant metastatic melanoma who received dabrafenib combined with trametinib. J Clin Oncol 2017:JCO2017741025

    Google Scholar 

  15. Uhara H, Kiyohara Y, Tsuda A et al (2018) Characteristics of adverse drug reactions in a vemurafenib early post-marketing phase vigilance study in Japan. Clin Transl Oncol 20(1):169–175

    CAS  PubMed  Google Scholar 

  16. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26):2517–2526

    CAS  PubMed  Google Scholar 

  18. Schadendorf D, Hodi FS, Robert C et al (2015) Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 33(17):1889–1894

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bertrand A, Kostine M, Barnetche T et al (2015) Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis. BMC Med 13:211

    PubMed  PubMed Central  Google Scholar 

  20. Fujisawa Y, Yoshino K, Otsuka A et al. (2018) Retrospective study of advanced melanoma patients treated with ipilimumab after nivolumab: Analysis of 60 Japanese patients. J Dermatol Sci 89(1):60–66

    CAS  PubMed  Google Scholar 

  21. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Topalian SL, Sznol M, McDermott DF et al (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32(10):1020–1030

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Robert C, Ribas A, Wolchok JD et al (2014) Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 384(9948):1109–1117

    CAS  PubMed  Google Scholar 

  24. Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated Melanoma. N Engl J Med 373(1):23–34

    PubMed  PubMed Central  Google Scholar 

  25. Robert C, Schachter J, Long GV et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532

    CAS  PubMed  Google Scholar 

  26. Khoja L, Day D, Wei-Wu Chen T et al (2017) Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: a systematic review. Ann Oncol 28(10):2377–2385

    CAS  PubMed  Google Scholar 

  27. Hughes J, Vudattu N, Sznol M et al (2015) Precipitation of autoimmune diabetes with anti-PD-1 immunotherapy. Diabetes Care 38(4):e55–e57

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Shirai T, Sano T, Kamijo F et al (2016) Acetylcholine receptor binding antibody-associated myasthenia gravis and rhabdomyolysis induced by nivolumab in a patient with melanoma. Jpn J Clin Oncol 46(1):86–88

    PubMed  Google Scholar 

  29. Suzuki S, Ishikawa N, Konoeda F et al (2017) Nivolumab-related myasthenia gravis with myositis and myocarditis in Japan. Neurology 89(11):1127–1134

    CAS  PubMed  Google Scholar 

  30. Weber JS, D’Angelo SP, Minor D et al (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16(4):375–384

    CAS  PubMed  Google Scholar 

  31. Kanameishi S, Otsuka A, Nonomura Y et al (2016) Idiopathic thrombocytopenic purpura induced by nivolumab in a metastatic melanoma patient with elevated PD-1 expression on B cells. Ann Oncol 27(3):546–547

    CAS  PubMed  Google Scholar 

  32. Wolchok JD, Chiarion-Sileni V, Gonzalez R et al (2017) Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 377(14):1345–1356

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hayward NK, Wilmott JS, Waddell N et al (2017) Whole-genome landscapes of major melanoma subtypes. Nature 545(7653):175–180

    CAS  PubMed  Google Scholar 

  34. Long GV, Grob JJ, Nathan P et al (2016) Factors predictive of response, disease progression, and overall survival after dabrafenib and trametinib combination treatment: a pooled analysis of individual patient data from randomised trials. Lancet Oncol 17(12):1743–1754

    CAS  PubMed  Google Scholar 

  35. Davies MA, Saiag P, Robert C et al (2017) Dabrafenib plus trametinib in patients with BRAF(V600)-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol 18(7):863–873

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Long GV AV, Menzies AM et al (2017) Randomized phase II study of nivolumab (nivo) or nivo plus ipilimumab (ipi) in patients (pts) with melanoma brain metastases (mets): anti-PD-1 brain collaboration (ABC). Presented at: 2017 World Congress of Melanoma; October 18–21, 2017; Brisbane, Australia 2017;SMR09-6

  37. Ahmed KA, Stallworth DG, Kim Y et al (2016) Clinical outcomes of melanoma brain metastases treated with stereotactic radiation and anti-PD-1 therapy. Ann Oncol 27(3):434–441

    CAS  PubMed  Google Scholar 

  38. Eggermont AM, Chiarion-Sileni V, Grob JJ et al (2015) Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol 16(5):522–530

    CAS  PubMed  Google Scholar 

  39. Weber J, Mandala M, Del Vecchio M et al (2017) Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med 377(19):1824–1835

    CAS  PubMed  Google Scholar 

  40. Long GV, Hauschild A, Santinami M et al (2017) Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N Engl J Med 377(19):1813–1823

    CAS  PubMed  Google Scholar 

  41. Watanabe D, Goshima F, Mori I et al (2008) Oncolytic virotherapy for malignant melanoma with herpes simplex virus type 1 mutant HF10. J Dermatol Sci 50(3):185–196

    CAS  PubMed  Google Scholar 

  42. Chesney J, Puzanov I, Collichio F et al (2017) Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol 2017:JCO2017737379

    Google Scholar 

  43. Long GV, Flaherty KT, Stroyakovskiy D et al (2017) Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study. Ann Oncol 28(7):1631–1639

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sakaizawa K, Goto Y, Kiniwa Y et al (2012) Mutation analysis of BRAF and KIT in circulating melanoma cells at the single cell level. Br J Cancer 106(5):939–946

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ashida A, Sakaizawa K, Mikoshiba A et al (2016) Quantitative analysis of the BRAF V600E mutation in circulating tumor-derived DNA in melanoma patients using competitive allele-specific TaqMan PCR. Int J Clin Oncol 21(5):981–988

    CAS  PubMed  Google Scholar 

  46. Manson G, Norwood J, Marabelle A et al (2016) Biomarkers associated with checkpoint inhibitors. Ann Oncol 27(7):1199–1206

    CAS  PubMed  Google Scholar 

  47. Van Allen EM, Miao D, Schilling B et al (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350(6257):207–211

    PubMed  PubMed Central  Google Scholar 

  48. Inoue H, Park JH, Kiyotani K et al (2016) Intratumoral expression levels of PD-L1, GZMA, and HLA-A along with oligoclonal T cell expansion associate with response to nivolumab in metastatic melanoma. Oncoimmunology 5(9):e1204507

    PubMed  PubMed Central  Google Scholar 

  49. Fujisawa Y, Yoshino K, Otsuka A et al (2017) Fluctuations in routine blood count might signal severe immune-related adverse events in melanoma patients treated with nivolumab. J Dermatol Sci 88(2):225–231

    CAS  PubMed  Google Scholar 

  50. Nakamura Y, Kitano S, Takahashi A et al (2016) Nivolumab for advanced melanoma: pretreatment prognostic factors and early outcome markers during therapy. Oncotarget 7(47):77404–77415

    PubMed  PubMed Central  Google Scholar 

  51. Freeman-Keller M, Kim Y, Cronin H et al (2016) Nivolumab in resected and unresectable metastatic melanoma: characteristics of immune-related adverse events and association with outcomes. Clin Cancer Res 22(84):886–894

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by JSPS KAKENHI Grant Number JP16K10150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Uhara.

Ethics declarations

Conflict of interest

Funds and Grant for research: ONO PHARMACEUTICAL CO., LTD, Bristol-Myers Squibb, Chugai Pharmaceutical Co., Ltd. Novartis, MSD, TAIHO Pharmaceutical Co., Ltd., Janssen Pharmaceutical K.K., Kyowa Hakko Kirin Company, Limited, Mitsubishi Tanabe Pharma Corporation, Esai, AbbVie, Maruho, DAIICHI SANKYO COMPANY, LIMITED, Tsumura, Porafarma, Mochida, Nihonkayaku, Acterion, Torii, KAKEN PHARMACEUTICAL CO., LTD. Consultancy fee: ONO PHARMACEUTICAL CO., LTD, Bristol-Myers Squibb, Chugai Pharmaceutical Co., Ltd. Novartis, MSD, Kyowa Hakko Kirin Company, Limited: Fee for speaking. ONO PHARMACEUTICAL CO., LTD, Bristol-Myers Squibb, Chugai Pharmaceutical Co., Ltd. Novartis, MSD, TAIHO Pharmaceutical Co., Ltd. Porafarma, Mitsubishi Tanabe Pharma Corporation, Maruho.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uhara, H. Recent advances in therapeutic strategies for unresectable or metastatic melanoma and real-world data in Japan. Int J Clin Oncol 24, 1508–1514 (2019). https://doi.org/10.1007/s10147-018-1246-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-018-1246-y

Keywords

Navigation