Skip to main content

Advertisement

Log in

Targeting metabolic reprogramming in KRAS-driven cancers

  • Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Mutations of KRAS are found in a variety of human malignancies, including in pancreatic cancer, colorectal cancer, and non-small cell lung cancer at high frequency. To date, no effective treatments that target mutant variants of KRAS have been introduced into clinical practice. In recent years, a number of studies have shown that the oncogene KRAS plays a critical role in controlling cancer metabolism by orchestrating multiple metabolic changes. One of the metabolic hallmarks of malignant tumor cells is their dependency on aerobic glycolysis, known as the Warburg effect. The role of KRAS signaling in the regulation of aerobic glycolysis has been reported in several types of cancer. KRAS-driven cancers are characterized by altered metabolic pathways involving enhanced nutrients uptake, enhanced glycolysis, enhanced glutaminolysis, and elevated synthesis of fatty acids and nucleotides. However, Just how mutated KRAS can coordinate the metabolic shift to promote tumor growth and whether specific metabolic pathways are essential for the tumorigenesis of KRAS-driven cancers are questions which remain to be answered. In this context, the aim of this review is to summarize current data on KRAS-related metabolic alterations in cancer cells. Given that cancer cells rely on changes in metabolism to support their growth and survival, the targeting of metabolic processes may be a potential strategy for treating KRAS-driven cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACS:

Acyl-CoA synthetase

ASNS:

Asparagine synthetase

BCAA:

Branched-chain amino acid

CMS:

Consensus molecular subtype

CRC:

Colorectal cancer

EGFR:

Epidermal growth factor receptor

FA:

Fatty acid

FASN:

Fatty acid synthase

FDG:

Fluorodeoxyglucose

FGFR:

Fibroblast growth factor receptor

GLS:

Glutaminase

GLUD1:

Glutamate dehydrogenase 1

GLUT1:

Glucose transporter-1

GOT:

Glutamate–oxaloacetate transaminase

HBP:

Hexosamine biosynthesis pathway

HK:

Hexokinase

MDH1:

Malate dehydrogenase 1

mTOR:

Mammalian target of rapamycin

NSCLC:

Non-small cell lung cancer

PDCA:

Pancreatic ductal cell carcinoma

PET:

Positron emission tomography

PKM2:

Pyruvate kinase M2

PPP:

Pentose phosphate pathway

ROS:

Reactive oxygen species

TCA:

Tricarboxylic acid

UPR:

Unfolded protein response

References

  1. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337

    Article  CAS  PubMed  Google Scholar 

  3. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95

    Article  CAS  PubMed  Google Scholar 

  4. Galluzzi L, Kepp O, Vander Heiden MG et al (2013) Metabolic targets for cancer therapy. Nat Rev Drug Discov 12:829–846

    Article  CAS  PubMed  Google Scholar 

  5. Warburg O (1956) Injuring of respiration the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  6. Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9:517–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gysin S, Salt M, Young A et al (2011) Therapeutic strategies for targeting ras proteins. Genes Cancer 2:359–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eagle H (1955) Nutrition needs of mammalian cells in tissue culture. Science 122:501–514

    Article  CAS  PubMed  Google Scholar 

  9. Kovacević Z, Morris HP (1972) The role of glutamine in the oxidative metabolism of malignant cells. Cancer Res 32:326–333

    PubMed  Google Scholar 

  10. Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35:427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bryant KL, Mancias JD, Kimmelman AC et al (2014) KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci 39:91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cohen R, Neuzillet C, Tijeras-Raballand A et al (2015) Targeting cancer cell metabolism in pancreatic adenocarcinoma. Oncotarget 6:16832–16847

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kimmelman AC (2015) Metabolic dependencies in RAS-driven cancers. Clin Cancer Res 21:1828–1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. White E (2013) Exploiting the bad eating habits of Ras-driven cancers. Genes Dev 27:2065–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330:1344–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Commisso C, Davidson SM, Soydaner-Azeloglu RG et al (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497:633–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vincent A, Herman J, Schulick R et al (2011) Pancreatic cancer. Lancet 378:607–620

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ying H, Kimmelman AC, Lyssiotis CA et al (2012) Oncogenic KRAS maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149:656–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Csibi A, Lee G, Yoon SO et al (2014) The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation. Curr Biol 24:2274–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. DeBerardinis RJ, Cheng T (2010) Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29:313–324

    Article  CAS  PubMed  Google Scholar 

  21. Bhutia YD, Babu E, Ramachandran S et al (2015) Amino acid transporters in cancer and their relevance to “glutamine addiction”: novel targets for the design of a new class of anticancer drugs. Cancer Res 75:1782–1788

    Article  CAS  PubMed  Google Scholar 

  22. Son J, Lyssiotis CA, Ying H et al (2013) Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496:101–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang YP, Zhou W, Wang J et al (2016) Arginine methylation of MDH1 by CARM1 inhibits glutamine metabolism and suppresses pancreatic cancer. Mol Cell 64:673–687

    Article  CAS  PubMed  Google Scholar 

  24. Mayers JR, Wu C, Clish CB et al (2014) Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med 20:1193–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mayers JR, Torrence ME, Danai LV et al (2016) Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science 353:1161–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang S, Wang X, Contino G et al (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25:717–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guo JY, Chen HY, Mathew R et al (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25:460–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eng CH, Wang Z, Tkach D et al (2016) Macroautophagy is dispensable for growth of KRAS mutant tumors and chloroquine efficacy. Proc Natl Acad Sci USA 113:182–187

    Article  CAS  PubMed  Google Scholar 

  29. White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12:401–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rosenfeld MR, Ye X, Supko JG et al (2014) A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 10:1359–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mahalingam D, Mita M, Sarantopoulos J et al (2014) Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy 10:1403–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wolpin BM, Rubinson DA, Wang X et al (2014) Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist 19:637–638

    Article  PubMed  PubMed Central  Google Scholar 

  33. Palm W, Park Y, Wright K et al (2015) The utilization of extracellular proteins as nutrients is suppressed by mTORC1. Cell 162:259–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kamphorst JJ, Cross JR, Fan J et al (2013) Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Natl Acad Sci USA 110:8882–8887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799

    Article  CAS  PubMed  Google Scholar 

  36. Karapetis CS, Khambata-Ford S, Jonker DJ et al (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancers. N Engl J Med 359:1757–1765

    Article  CAS  PubMed  Google Scholar 

  37. Lievre A, Bachet JB, Boige V et al (2008) KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 26:374–379

    Article  CAS  PubMed  Google Scholar 

  38. Guinney J, Dienstmann R, Wang X et al (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21:1350–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yun J, Rago C, Cheong I et al (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325:1555–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jadvar H, Alavi A, Gambhir SS (2009) 18F-FDG uptake in lung, breast, and colon cancers: molecular biology correlates and disease characterization. J Nucl Med 50:1820–1827

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kawada K, Nakamoto Y, Kawada M et al (2012) Relationship between 18F-fluorodeoxyglucose accumulation and KRAS/BRAF mutations in colorectal cancer. Clin Cancer Res 18:1696–1703

    Article  CAS  PubMed  Google Scholar 

  42. Kawada K, Toda K, Nakamoto Y et al (2015) Relationship between 18F-FDG PET/CT scans and KRAS mutations in metastatic colorectal cancer. J Nucl Med 56:1322–1327

    Article  CAS  PubMed  Google Scholar 

  43. Kawada K, Iwamoto M, Sakai Y (2016) Mechanisms underlying 18F-fluorodeoxyglucose accumulation in colorectal cancer. World J Radiol 8:880–886

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen SW, Chiang HC, Chen WT et al (2014) Correlation between PET/CT parameters and KRAS expression in colorectal cancer. Clin Nucl Med 39:685–689

    Article  PubMed  Google Scholar 

  45. Miles KA, Ganeshan B, Rodriguez-Justo M et al (2014) Multifunctional imaging signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in colorectal cancer. J Nucl Med 55:386–391

    Article  CAS  PubMed  Google Scholar 

  46. Lee JH, Kang J, Baik SH et al (2016) Relationship between 18F-Fluorodeoxyglucose uptake and V-Ki-Ras2 kirsten rat sarcoma viral oncogene homolog mutation in colorectal cancer patients: variability depending on c-reactive protein level. Medicine 95:e2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Caicedo C, Garcia-Velloso MJ, Lozano MD et al (2014) Role of [1∙F]FDG PET in prediction of KRAS and EGFR mutation status in patients with advanced non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 41:2058–2065

    Article  CAS  PubMed  Google Scholar 

  48. Iwamoto M, Kawada K, Nakamoto Y et al (2014) Regulation of 18F-FDG accumulation in colorectal cancer cells with mutated KRAS. J Nucl Med 55:2038–2044

    Article  CAS  PubMed  Google Scholar 

  49. Yun J, Mullarky E, Lu C et al (2015) Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350:1391–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aguilera O, Muñoz-Sagastibelza M, Torrejón B et al (2016) Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer. Oncotarget 7:47954–47965

    Article  PubMed  PubMed Central  Google Scholar 

  51. Toda K, Kawada K, Iwamoto M et al (2016) Metabolic alterations caused by KRAS mutations in colorectal cancer contribute to cell adaptation to glutamine depletion by upregulation of asparagine synthetase. Neoplasia 18:654–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang J, Fan J, Venneti S et al (2014) Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol Cell 56:205–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hettmer S, Schinzel AC, Tchessalova D et al (2015) Functional genomic screening reveals asparagine dependence as a metabolic vulnerability in sarcoma. Elife 4:e09436. doi:10.7554/eLife.09436

    PubMed  PubMed Central  Google Scholar 

  54. Ye J, Kumanova M, Hart LS et al (2010) The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J 29:2082–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Balasubramanian MN, Butterworth EA, Kilberg MS (2013) Asparagine synthetase: regulation by cell stress and involvement in tumor biology. Am J Physiol Endocrinol Metab 304:789–799

    Article  Google Scholar 

  56. Dufour E, Gay F, Aguera K et al (2012) Pancreatic tumor sensitivity to plasma l-asparagine starvation. Pancreas 41:940–948

    Article  CAS  PubMed  Google Scholar 

  57. Richards NG, Kilberg MS (2006) Asparagine synthetase chemotherapy. Annu Rev Biochem 75:629–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ikeuchi H, Ahn YM, Otokawa T et al (2012) A sulfoximine-based inhibitor of human asparagine synthetase kills l-asparaginase-resistant leukemia cells. Bioorg Med Chem 20:5915–5927

    Article  CAS  PubMed  Google Scholar 

  59. Kral AS, Xu S, Graeber TG et al (2016) Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat Commun 7:11457

    Article  Google Scholar 

  60. Weinberg F, Hamanaka R, Wheaton WW et al (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107:8788–8793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wong CC, Qian Y, Li X et al (2016) SLC25A22 promotes proliferation and survival of colorectal cancer cells with KRAS mutations and xenograft tumor progression in mice via intracellular synthesis of aspartate. Gastroenterology 151(945–960):e6

    Google Scholar 

  62. Miyo M, Konno M, Nishida N et al (2016) Metabolic adaptation to nutritional stress in human colorectal cancer. Sci Rep 6:38415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fuchs BC, Bode BP (2005) Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol 15:254–266

    Article  CAS  PubMed  Google Scholar 

  64. Bhutia YD, Ganapathy V (2016) Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim Biophys Acta 1863:2531–2539

    Article  CAS  PubMed  Google Scholar 

  65. Herbst RS, Heymach JV, Lippman SM (2008) Lung cancer. N Engl J Med 359:1367–1380

    Article  CAS  PubMed  Google Scholar 

  66. Manchado E, Weissmueller S, Morris JP 4th (2016) A combinatorial strategy for treating KRAS-mutant lung cancer. Nature 534:647–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Patra KC, Wang Q, Bhaskar PT et al (2013) Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24:213–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jain M, Nilsson R, Sharma S et al (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336:1040–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kim D, Fiske BP, Birsoy K et al (2015) SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520:363–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Guo JY, Karsli-Uzunbas G, Mathew R et al (2013) Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 27:1447–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Padanad MS, Konstantinidou G, Venkateswaran N (2016) Fatty acid oxidation mediated by Acyl-CoA synthetase long chain 3 is required for mutant KRAS lung tumorigenesis. Cell Rep 16:1614–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gouw AM, Eberlin LS, Margulis K (2017) Oncogene KRAS activates fatty acid synthase, resulting in specific ERK and lipid signatures associated with lung adenocarcinoma. Proc Natl Acad Sci USA 114:4300–4305

    Article  CAS  PubMed  Google Scholar 

  73. Davidson SM, Papagiannakopoulos T, Olenchzock BA et al (2016) Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab 23:517–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhou B, Der CJ, Cox AD (2016) The role of wild type RAS isoforms in cancer. Semin Cell Dev Biol 58:60–69

    Article  CAS  PubMed  Google Scholar 

  75. Ratnikov BI, Scott DA, Osterman AL (2017) Metabolic rewiring in melanoma. Oncogene 36:147–157

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kawada.

Ethics declarations

Conflict of interest

There are no potential conflicts of interest to be disclosed.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawada, K., Toda, K. & Sakai, Y. Targeting metabolic reprogramming in KRAS-driven cancers. Int J Clin Oncol 22, 651–659 (2017). https://doi.org/10.1007/s10147-017-1156-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-017-1156-4

Keywords

Navigation