Skip to main content
Log in

FOXP3 autoantibody as a potential early prognostic serum biomarker in patients with cervical cancer

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Overexpression of tumor-associated antigens has been reported in many types of cancer and may trigger secretion of their autoantibodies. The present work was designed to test whether circulating antibody to FOXP3 protein-derived antigens was altered in early cervical cancer and cervical benign tumors.

Methods

A total of 141 patients with cervical cancer, 133 patients with cervical benign tumors and 148 healthy age-matched volunteers were recruited. The level of circulating anti-FOXP3 IgG antibody was tested using an enzyme-linked immunosorbent assay developed in-house with linear peptide antigens derived from FOXP3 protein. The linear peptide antigens were designed according to the computational prediction of HLA-II epitopes.

Results

Student’s t test showed that anti-FOXP3 IgG in the malignant tumor group and the benign tumor group was significantly higher than in the control group (t = 6.127, p < 0.001; t = 2.704, p = 0.007). In addition, patients with stage I cervical cancer (t = 2.968, p = 0.003) had a significantly higher level of FOXP3 autoantibodies than patients with benign tumors. The sensitivity against >90 % specificity was 20.6 % with an interassay deviation of 11.7 % in the cervical cancer group. Based on a cut-off value determined by the 98th percentile of the control group IgG levels, the anti-FOXP3 IgG positivity was 2.1 % in patients with cervical cancer compared to 2.0 % in the health controls (chi-squared = 0.004, p = 0.952, OR = 1.051, 95 % CI 0.209–5.295).

Conclusion

The circulating autoantibody to FOXP3 reflecting the continuous development of the cervical lesion, may be a potential biomarker with early prognostic values for cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J et al (2005) Global cancer statistics, 2002. CA Cancer J Clin 55(2):74–108

    Article  PubMed  Google Scholar 

  2. Yanan Wu (2009) The screening methods of cervical carcinoma at early stage. J Liaoning University Traditional Chin Med 11(6):65–67

    Google Scholar 

  3. Anderson KS, LaBaer J (2005) The sentinel within: exploiting the immune system for cancer biomarkers. J Proteome Res 4(4):1123–1133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Zaenker P, Ziman MR (2013) Serologic autoantibodies as diagnostic cancer biomarkers—a review. Cancer Epidemiol Biomarkers Prev 22(12):2161–2181

    Article  CAS  PubMed  Google Scholar 

  5. Coffer PJ, Burgering BM (2004) Forkhead-box transcription factors and their role in the immune system. Nat Rev Immunol 4(11):889–899

    Article  CAS  PubMed  Google Scholar 

  6. Fontenot JD, Rasmussen JP, Williams LM et al (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22(3):329–341

    Article  CAS  PubMed  Google Scholar 

  7. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061

    Article  CAS  PubMed  Google Scholar 

  8. Whiteside TL (2014) Regulatory T cell subsets in human cancer: are they regulating for or against tumor progression? Cancer Immunol Immunother 63(1):67–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Wolf AM, Wolf D, Steurer M et al (2003) Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 9(2):606–612

    PubMed  Google Scholar 

  10. Woo EY, Chu CS, Goletz TJ et al (2001) Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61(12):4766–4772

    CAS  PubMed  Google Scholar 

  11. Liu L, Liu N, Liu B et al (2012) Are circulating autoantibodies to ABCC3 transporter a potential biomarker for lung cancer? J Cancer Res Clin Oncol 138(10):1737–1742

    Article  CAS  PubMed  Google Scholar 

  12. Cheng Y, Xu J, Guo J et al (2013) Circulating autoantibody to ABCC3 may be a potential biomarker for esophageal squamous cell carcinoma. Clin Transl Oncol 15(5):398–402

    Article  CAS  PubMed  Google Scholar 

  13. Zhang C, Ye L, Guan S et al (2014) Autoantibodies against p16 protein-derived peptides may be a potential biomarker for non-small cell lung cancer. Tumour Biol 35(3):2047–2051

    Article  CAS  PubMed  Google Scholar 

  14. Jin Y, Guan S, Liu L et al (2014) Anti-p16 autoantibodies may be a useful biomarker for early diagnosis of esophageal cancer. Asia Pac J Clin Oncol. doi:10.1111/ajco.12198

  15. Wang W, Guan S, Sun S et al (2014) Detection of circulating antibodies to linear peptide antigens derived from ANXA1 and DDX53 in lung cancer. Tumor Biol 35(5):4901–4905

    Article  CAS  Google Scholar 

  16. Ye L, Guan S, Zhang C et al (2013) Circulating autoantibody to FOXP3 may be a potential biomarker for esophageal squamous cell carcinoma. Tumour Biol 34(3):1873–1877

    Article  CAS  PubMed  Google Scholar 

  17. Cunha LL, Morari EC, Nonogaki S et al (2012) Foxp3 expression is associated with aggressiveness in differentiated thyroid carcinomas. Clinics (Sao Paulo) 67(5):483–488

    Article  Google Scholar 

  18. Tan EM, Zhang J (2008) Autoantibodies to tumor-associated antigens: reporters from the immune system. Immunol Rev 222:328–340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Wang LH, Su L, Wang JT (2010) Correlation between elevated FOXP3 expression and increased lymph node metastasis of gastric cancer. Chin Med J (Engl) 123(24):3545–3549

    CAS  Google Scholar 

  20. Niu J, Jiang C, Li C et al (2011) Foxp3 expression in melanoma cells as a possible mechanism of resistance to immune destruction. Cancer Immunol Immunother 60(8):1109–1118

    Article  CAS  PubMed  Google Scholar 

  21. Tan HT, Low J, Lim SG et al (2009) Serum autoantibodies as biomarkers for early cancer detection. FEBS J 276(23):6880–6904

    Article  CAS  PubMed  Google Scholar 

  22. Chen H, Werner S, Tao S et al (2014) Blood autoantibodies against tumor-associated antigens as biomarkers in early detection of colorectal cancer. Cancer Lett 346(2):178–187

    Article  CAS  PubMed  Google Scholar 

  23. Werner S, Chen H, Tao S et al (2014) Systematic review: serum autoantibodies in the early detection of gastric cancer. Int J Cancer. doi:10.1002/ijc.28807

  24. Erfani N, Hamedi-Shahraki M, Rezaeifard S et al (2014) FoxP3+ regulatory T cells in peripheral blood of patients with epithelial ovarian cancer. Iran J Immunol 11(2):105–112

    PubMed  Google Scholar 

  25. Hanakawa H, Orita Y, Sato Y et al (2014) Regulatory T-cell infiltration in tongue squamous cell carcinoma. Acta Otolaryngol 134(8):859–864

    Article  CAS  PubMed  Google Scholar 

  26. Azzimonti B, Zavattaro E, Provasi M et al (2015) Intense Foxp3+ CD25+ regulatory T cell infiltration is associated with high-grade cutaneous squamous cell carcinoma and counterbalanced by CD8+ /Foxp3+ CD25+ ratio. Br J Dermatol 172(1):64–73

    Article  CAS  PubMed  Google Scholar 

  27. Shibuya KC, Goel VK, Xiong W et al (2014) Pancreatic ductal adenocarcinoma contains an effector and regulatory immune cell infiltrate that is altered by multimodal neoadjuvant treatment. PLoS One 9(5):e96565

    Article  PubMed Central  PubMed  Google Scholar 

  28. Kim S, Lee A, Lim W et al (2014) Zonal difference and prognostic significance of FOXP3 regulatory T cell infiltration in breast cancer. J Breast Cancer 17(1):8–17

    Article  PubMed Central  PubMed  Google Scholar 

  29. Raghavan S, Quiding-Järbrink M (2011) Regulatory T cells in gastrointestinal tumors. Expert Rev Gastroenterol Hepatol 5(4):489–501

    Article  CAS  PubMed  Google Scholar 

  30. Merlo A, Casalini P, Carcangiu ML et al (2009) FOXP3 expression and overall survival in breast cancer. J Clin Oncol 27(11):1746–1752

    Article  CAS  PubMed  Google Scholar 

  31. Wolf AM, Rumpold H, Wolf D et al (2007) Role of forkhead box protein 3 expression in invasive breast cancer. J Clin Oncol 25(28):4499–4500

    Article  PubMed  Google Scholar 

  32. Hou F, Li Z, Ma D et al (2012) Distribution of Th17 cells and Foxp3-expressing T cells in tumor-infiltrating lymphocytes in patients with uterine cervical cancer. Clin Chim Acta 413(23–24):1848–1854

    Article  CAS  PubMed  Google Scholar 

  33. Jaafar F, Righi E, Lindstrom V et al (2009) Correlation of CXCL12 expression and FoxP3+ cell infiltration with human papillomavirus infection and clinicopathological progression of cervical cancer. Am J Pathol 175(4):1525–1535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Loddenkemper C, Hoffmann C, Stanke J et al (2009) Regulatory (FOXP3+) T cells as target for immune therapy of cervical intraepithelial neoplasia and cervical cancer. Cancer Sci 100(6):1112–1117

    Article  CAS  PubMed  Google Scholar 

  35. Scott ME, Ma Y, Kuzmich L et al (2009) Diminished IFN-gamma and IL-10 and elevated FOXP3 mRNA expression in the cervix are associated with CIN 2 or 3. Int J Cancer 124(6):1379–1383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Zeng C, Yao Y, Jie W et al (2013) Up-regulation of Foxp3 participates in progression of cervical cancer. Cancer Immunol Immunother 62(3):481–487

    Article  CAS  PubMed  Google Scholar 

  37. Caron M, Choquet-Kastylevsky G, Joubert-Caron R (2007) Cancer immunomics using autoantibody signatures for biomarker discovery. Mol Cell Proteomics 6(7):1115–1122

    Article  CAS  PubMed  Google Scholar 

  38. Chapman CJ, Healey GF, Murray A et al (2012) Early CDT®-Lung test: improved clinical utility through additional autoantibody assays. Tumour Biol 33(5):1319–1326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Jilin Pharmaceutical Industry Development Special Fund Project (No. 130701YY01066802). We would like to acknowledge Dr. Cui Manhua and colleagues for their help and support with serum sample processing.

Conflict of interest

All the authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linlin Liu or Shilong Sun.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Huangfu, M., Jia, X. et al. FOXP3 autoantibody as a potential early prognostic serum biomarker in patients with cervical cancer . Int J Clin Oncol 20, 982–988 (2015). https://doi.org/10.1007/s10147-015-0797-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-015-0797-4

Keywords

Navigation