Skip to main content

Advertisement

Log in

Mechanisms of hormonal therapy resistance in breast cancer

  • Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Whilst estrogen receptor (ER)-positive breast cancers are preferentially treated with hormone therapy, approximately one-third of them relapse. The mechanisms of refractoriness have been investigated by numerous studies but have not been fully clarified. Hormonal therapy resistance, particularly aromatase inhibitor (AI) resistance, may be related to the acquisition of alternative intracellular ER signaling. We have been investing the mechanisms using cancer specimens and cell lines by monitoring the transcription activity of ERs. AI refractory specimens showed diverse ER activity in the adenovirus estrogen receptor element-green fluorescent protein (ERE-GFP) assay and varied sensitivity to anti-estrogens, indicating the existence of multiple resistant mechanisms. We established six different types of cell lines mimicking AI resistance from ERE-GFP-introduced ER-positive cell lines. They revealed that multiple and alternative ER activating pathways were involved in the resistance, such as phosphorylation-dependent or androgen metabolite-dependent mechanisms. The response to fulvestrant and mammalian target of rapamycin inhibitor also varied among individual resistant cell lines. These results indicate that further subclassification of ER-positive breast cancer is extremely important to decide the therapeutic management of not only hormonal therapy but also new molecular target therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Strasser-Weippl K, Goss PE (2005) Advances in adjuvant hormonal therapy for postmenopausal women. J Clin Oncol 23(8):1751–1759

    Article  CAS  PubMed  Google Scholar 

  2. Riggins RB, Schrecengost RS, Guerrero MS et al (2007) Pathways to tamoxifen resistance. Cancer Lett 256(1):1–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Baum M, Buzdar A, Cuzick J et al (2003) Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early-stage breast cancer: results of the ATAC (Arimidex, Tamoxifen Alone or in Combination) trial efficacy and safety update analyses. Cancer 98(9):1802–1810

    Article  CAS  PubMed  Google Scholar 

  4. Yue W, Wang JP, Conaway MR et al (2003) Adaptive hypersensitivity following long-term estrogen deprivation: involvement of multiple signal pathways. J Steroid Biochem Mol Biol 86(3–5):265–274

    Article  CAS  PubMed  Google Scholar 

  5. Sabnis GJ, Jelovac D, Long B et al (2005) The role of growth factor receptor pathways in human breast cancer cells adapted to long-term estrogen deprivation. Cancer Res 65(9):3903–3910

    Article  CAS  PubMed  Google Scholar 

  6. Martin LA, Farmer I, Johnston SR et al (2005) Elevated ERK1/ERK2/estrogen receptor cross-talk enhances estrogen-mediated signaling during long-term estrogen deprivation. Endocr Relat Cancer 12(Suppl 1):S75–S84

    Article  CAS  PubMed  Google Scholar 

  7. Santen RJ, Song RX, Masamura S et al (2008) Adaptation to estradiol deprivation causes up-regulation of growth factor pathways and hyper sensitivity to estradiol in breast cancer cells. Adv Exp Med Biol 630:19–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Gohno T, Seino Y, Hanamura T et al (2012) Individual transcriptional activity of estrogen receptors in primary breast cancer and its clinical significance. Cancer Med 1(3):328–337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Yamaguchi Y, Takei H, Suemasu K et al (2005) Tumor-stromal interaction through the estrogen-signaling pathway in human breast cancer. Cancer Res 65(11):4653–4662

    Article  CAS  PubMed  Google Scholar 

  10. Matsumoto M, Yamaguchi Y, Seino Y et al (2008) Estrogen signaling ability in human endometrial cancer through the cancer-stromal interaction. Endocr Relat Cancer 15(2):451–463

    Article  CAS  PubMed  Google Scholar 

  11. Hanamura T, Niwa T, Nishikawa S et al (2013) Androgen metabolite-dependent growth of hormone receptor-positive breast cancer as a possible aromatase inhibitor-resistance mechanism. Breast Cancer Res Treat 139(3):731–740

    Article  CAS  PubMed  Google Scholar 

  12. Hanamura T, Niwa T, Gohno T et al (2014) Possible role of the aromatase-independent steroid metabolism pathways in hormone responsive primary breast cancers. Breast Cancer Res Treat 143(1):69–80

    Article  CAS  PubMed  Google Scholar 

  13. Fujiki N, Konnno H, Kaneko Y et al (2014) Estrogen response element-GFP (ERE-GFP) introduced MCF-7 cells demonstrated the coexistence of multiple estrogen-deprivation resistant mechanisms. J Steroid Biochem Mol Biol 139:61–72

    Article  CAS  PubMed  Google Scholar 

  14. Cambell RA, Bhat-Nakshatri P, Patel NM et al (2001) Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem 276(13):9817–9824

    Article  Google Scholar 

  15. Castano E, Vorojeikina DP, Notides AC (1997) Phosphorylation of serine-167 on the human oestrogen receptor is important for oestrogen response element binding and transcriptional activation. Biochem J 326(Pt1):149–157

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Yamashita H, Nishio M, Kobayashi S et al (2005) Phosphorylation of estrogen receptor alpha serine 167 is predictive of response to endocrine therapy and increases postrelapse survival in metastatic breast cacer. Breast Cancer Res 7(5):R753–R764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Fujii R, Hanamura T, Suzuki T et al (2014) Increased androgen receptor activity and cell proliferation in aromatase inhibitor-resistant breast carcinoma. J Steroid Biochem Mol Biol 144 Pt B:513–522

    Article  PubMed  Google Scholar 

  18. Miller TW (2013) Endocrine resistance: what do we know? Am Soc Clin Oncol Educ Book. doi:10.1200/EdBook_AM.2013.33.e37

  19. Di Leo A, Jerusalem G, Petruzelka L et al (2014) Final overall survival: fulvestrant 500 mg vs 250 mg in the randomized CONFIRM trial. J Natl Cancer Inst 106:djt337

    Article  PubMed Central  PubMed  Google Scholar 

  20. Zardavas D, Phillips WA, Loi S (2014) PIK3CA mutations in breast cancer: reconciling findings from preclinical and clinical data. Breast Cancer Res 16:201

    Article  PubMed Central  PubMed  Google Scholar 

  21. Baselga J, Campone M, Piccart M et al (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366:520–529

    Article  CAS  PubMed  Google Scholar 

  22. Piccart M, Hortobagyi GN, Campone M et al (2014) Everolimus plus exemestane for hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast caner: overall survival results from BOLERO-2. Ann Oncol 25:2357–2362

    Article  CAS  PubMed  Google Scholar 

  23. Diaby V, Adunlin G, Ali AA et al (2014) Using quality-adjusted progression-free survival as an outcome measure to assess the benefits of cancer drugs in randomized-controlled trials: case of the BOLERO-2 trial. Breast Cancer Res Treat 146:669–673

    Article  CAS  PubMed  Google Scholar 

  24. Zardavas D, Baselga J, Piccart M (2013) Emerging targeted agents in metastatic breaset cancer. Nat Rev Clin Oncol 10:191–210

    Article  CAS  PubMed  Google Scholar 

  25. Musgrove EA, Sutherland RL (2009) Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9(631):6–43

    Google Scholar 

  26. Cadoo KA, Gucalp A, Traina TA (2014) Palbociclib: an evidence-based review of its potential in the treatment of breast cancer. Breast Cancer (Dove Med Press) 6:123–133

    PubMed Central  CAS  Google Scholar 

  27. Johnston SR, Schiavon G (2013) Treatment algorithms for hormone receptor-positive advanced breast cancer: going forward in endocrine therapy—overcoming resistance and introducing new agents. Am Soc Clin Oncol Educ Book. doi:10.1200/EdBook_AM.2013.33.e28

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Hayashi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, Si., Kimura, M. Mechanisms of hormonal therapy resistance in breast cancer. Int J Clin Oncol 20, 262–267 (2015). https://doi.org/10.1007/s10147-015-0788-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-015-0788-5

Keywords

Navigation